Skip to main content

Atherosclerosis Imaging Using Cardiovascular Magnetic Resonance

  • Chapter
  • First Online:
Atherosclerosis: Clinical Perspectives Through Imaging

Abstract

Magnetic resonance imaging (MRI) provides a unique noninvasive imaging technology to assess the anatomy and physiology of atherosclerotic disease burden without the use of ionizing radiation. Cardiac MRI has an established role and is increasingly utilized clinically in rest and stress myocardial perfusion imaging, viability assessment and infarct detection. Peripheral angiography, with and without contrast enhancement, is currently a more mature application than coronary magnetic resonance angiography (MRA). Technical limitations, particularly related to MRI’s limited spatial resolution for accurately imaging the relatively smaller coronary vessels, preclude the widespread use of coronary MRA at this time. However, the sensitivity and negative predictive value are relatively high for the identification of left main or multi-vessel disease. Compared with native coronary arteries, coronary artery bypass grafts are more static, are generally of larger caliber and have a more linear course, making them better suited than native coronary arteries for assessment by magnetic resonance angiography. Further research and development are needed before coronary angiography for a complete cardiac atherosclerosis assessment is a viable diagnostic tool. The ability to identify vulnerable plaque is an area of growing interest and MRI has emerged as a promising non-invasive modality to characterize plaque composition. Cardiovascular MRI offers a unique comprehensive assessment of both plaque anatomy and physiology. Ultimately, the most significant contribution of atherosclerosis imaging will be in its ability to predict risk, modify therapy and improve clinical outcomes. Cardiovascular MRI has a promising future in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porto I, Selvanayagam J, Ashar V, Neubauer S, Banning AP. Safety of magnetic resonance imaging one to three days after bare metal and drug-eluting stent implantation. Am J Cardiol. 2005;96(3):366–8.

    Article  PubMed  CAS  Google Scholar 

  2. Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121(13):e266–369.

    Article  PubMed  Google Scholar 

  3. Manning WJ, Nezafat R, Appelbaum E, Danias PG, Hauser TH, Yeon SB. Coronary magnetic resonance imaging. Cardiol Clin. 2007;25(1):141–70, vi.

    Article  PubMed  Google Scholar 

  4. Hendel RC, Patel MR, Kramer CM, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48(7):1475–97.

    Article  PubMed  Google Scholar 

  5. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345(26):1863–9.

    Article  PubMed  CAS  Google Scholar 

  6. Danias PG, Roussakis A, Ioannidis JP. Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis. J Am Coll Cardiol. 2004;44(9):1867–76.

    PubMed  Google Scholar 

  7. Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol. 2006;48(10):1946–50.

    Article  PubMed  Google Scholar 

  8. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. 2010;152(3):167–77.

    PubMed  Google Scholar 

  9. Langer C, Peterschroder A, Franzke K, et al. Noninvasive coronary angiography focusing on calcification: multislice computed tomography compared with magnetic resonance imaging. J Comput Assist Tomogr. 2009;33(2):179–85.

    Article  PubMed  Google Scholar 

  10. Engelmann MG, Knez A, von Smekal A. Non-invasive coronary bypass graft imaging after multivessel revascularisation. Int J Cardiol. 2000;76(1):65–74.

    Article  PubMed  CAS  Google Scholar 

  11. Langerak SE, Vliegen HW, de Roos A. Detection of vein graft disease using high-resolution magnetic resonance angiography. Circulation. 2002;105(3):328–33.

    Article  PubMed  Google Scholar 

  12. Langerak SE, Vliegen HW, Jukema JW, et al. Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation. 2003;107(11):1502–8.

    Article  PubMed  CAS  Google Scholar 

  13. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99(6):763–70.

    Article  PubMed  CAS  Google Scholar 

  14. Paetsch I, Jahnke C, Wahl A, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation. 2004;110(7):835–42.

    Article  PubMed  CAS  Google Scholar 

  15. Hamon M, Fau G, Nee G, Ehtisham J, Morello R, Hamon M. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson. 2010;12(1):29.

    Article  PubMed  Google Scholar 

  16. Kuijpers D, Ho KY, van Dijkman PR, Vliegenthart R, Oudkerk M. Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation. 2003;107(12):1592–7.

    Article  PubMed  Google Scholar 

  17. Lubbers DD, Janssen CH, Kuijpers D, et al. The additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress cardiac MRI for the detection of myocardial ischemia. Int J Cardiovasc Imaging. 2008;24(1):69–76.

    Article  PubMed  Google Scholar 

  18. Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361(9355):374–9.

    Article  PubMed  Google Scholar 

  19. Cury RC, Shash K, Nagurney JT, et al. Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation. 2008;118(8):837–44.

    Article  PubMed  Google Scholar 

  20. Patel AR, Antkowiak PF, Nandalur KR, et al. Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. J Am Coll Cardiol. 2010;56(7):561–9.

    Article  PubMed  Google Scholar 

  21. Brott TG, Halperin JL, Abbara S, et al. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/ SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. Vasc Med. 2011;16(1):35–77.

    Article  PubMed  Google Scholar 

  22. Cosottini M, Pingitore A, Puglioli M, et al. Contrast-enhanced three-dimensional magnetic resonance angiography of atherosclerotic internal carotid stenosis as the noninvasive imaging modality in revascularization decision making. Stroke. 2003;34(3):660–4.

    Article  PubMed  Google Scholar 

  23. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. J Am Coll Cardiol. 2006;47(6):1239–312.

    Article  PubMed  Google Scholar 

  24. Thornton MJ, Thornton F, O’Callaghan J, et al. Evaluation of dynamic gadolinium-enhanced breath-hold MR angiography in the diagnosis of renal artery stenosis. AJR Am J Roentgenol. 1999;173(5):1279–83.

    PubMed  CAS  Google Scholar 

  25. Sommer T, Fehske W, Holzknecht N, et al. Aortic dissection: a comparative study of diagnosis with spiral CT, multiplanar transesophageal echocardiography, and MR imaging. Radiology. 1996;199(2):347–52.

    PubMed  CAS  Google Scholar 

  26. Vancraeynest D, Pasquet A, Roelants V, et al. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57(20): 1961–79.

    Article  PubMed  Google Scholar 

  27. Briley-Saebo KC, Shaw PX, Mulder WJ, et al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation. 2008;117(25):3206–15.

    Article  PubMed  CAS  Google Scholar 

  28. Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102(5):506–10.

    Article  PubMed  CAS  Google Scholar 

  29. Schneiderman J, Wilensky RL, Weiss A, et al. Diagnosis of thin-cap fibroatheromas by a self-contained intravascular magnetic resonance imaging probe in ex vivo human aortas and in situ coronary arteries. J Am Coll Cardiol. 2005;45(12):1961–9.

    Article  PubMed  Google Scholar 

  30. Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation. 2000;102(9):959–64.

    Article  PubMed  CAS  Google Scholar 

  31. Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation. 2001;104(17):2051–6.

    Article  PubMed  CAS  Google Scholar 

  32. Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation. 2002;105(2):181–5.

    Article  PubMed  Google Scholar 

  33. Larose E, Kinlay S, Selwyn AP, et al. Improved characterization of atherosclerotic plaques by gadolinium contrast during intravascular magnetic resonance imaging of human arteries. Atherosclerosis. 2008;196(2):919–25.

    Article  PubMed  CAS  Google Scholar 

  34. Lee JM, Robson MD, Yu LM, et al. Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J Am Coll Cardiol. 2009;54(19):1787–94.

    Article  PubMed  CAS  Google Scholar 

  35. Tang TY, Howarth SP, Miller SR, et al. The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol. 2009;53(22):2039–50.

    Article  PubMed  CAS  Google Scholar 

  36. Underhill HR, Yuan C, Zhao XQ, et al. Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am Heart J. 2008;155(3):584–8.

    Article  PubMed  Google Scholar 

  37. West AM, Anderson JD, Meyer CH. The effect of ezetimibe on peripheral arterial atherosclerosis depends upon statin use at baseline. Atherosclerosis. 2011;218(1):156–62.

    Article  PubMed  CAS  Google Scholar 

  38. Gauden A, Phal M, Drummond K. MRI safety: nephrogenic systemic fibrosis and other risks. J Clin Neurosci. 2010;17(9):1097–104.

    Article  PubMed  Google Scholar 

  39. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, Klimek W, Oswald H, Fleck E. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101(12):1379–83.

    Article  PubMed  CAS  Google Scholar 

  40. Langer C, Wiemer M, Peterschroder A. Multislice computed tomography and magnetic resonance imaging: complementary use in noninvasive coronary angiography. Circulation. 2005;112(23):e343–4.

    Article  PubMed  Google Scholar 

  41. Bunce NH, Lorenz CH, John AS. Coronary artery bypass graft patency: assessment with true ast imaging with steady-state precession versus gadolinium-enhanced MR angiography. Radiology. 2003;227:440–6.

    Article  PubMed  Google Scholar 

  42. Charoenpanichkit C, Hundley WB. The 20 year evolution of dobutamine stress cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:59.

    Article  PubMed  Google Scholar 

  43. Schoenberg SO, Rieger J, Johannson LO. Diagnosis of renal artery stenosis with magnetic resonance angiography: update 2003. Nephrol Dial Transplant. 2003;18:1252–6.

    Article  PubMed  Google Scholar 

  44. Francois CJ, Carr JC. MRI of the thoracic aorta. Cardiol Clin. 2007;25:171–84.

    Article  PubMed  Google Scholar 

  45. Larose E, Yeghiazarians Y, Libby P. Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging. Circulation. 2005;112(15):2324–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Woods M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Woods, K.M., Weissman, G. (2013). Atherosclerosis Imaging Using Cardiovascular Magnetic Resonance. In: Taylor, A., Villines, T. (eds) Atherosclerosis: Clinical Perspectives Through Imaging. Springer, London. https://doi.org/10.1007/978-1-4471-4288-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4288-1_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4287-4

  • Online ISBN: 978-1-4471-4288-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics