Skip to main content

Hybrid Predictive Control: Mono-objective and Multi-objective Design

  • Chapter
  • First Online:
Hybrid Predictive Control for Dynamic Transport Problems

Abstract

The design of hybrid predictive control (HPC), which is based on both piecewise affine (PWA) models and hybrid fuzzy models, is described. For solving the nonlinear optimization problems resulting from these controllers, evolutionary algorithms are proposed, thereby demonstrating a reduction of computation effort in comparison with classical methods. Moreover, this chapter presents a new approach for dealing with HPC formulations using evolutionary multi-objective optimization. Different criteria are proposed to obtain an optimal control action from the Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bäck T (2000) An overview of parameter control methods by self-adaptation in evolutionary algorithms. Annales Societatis Mathematicae Polonae. Series 4. Fundam Inform 35:51–66

    Google Scholar 

  • Bemporad A, Morari M (1999) Control of systems integrating logic, dynamics and constraints. Automatica 35:407–427

    Article  MathSciNet  MATH  Google Scholar 

  • Bemporad A, Morari M (2000) Predictive control of constrained hybrid systems, Automatica 71–78

    Google Scholar 

  • Bemporad A, Muñoz de la Peña A (2009) Multiobjective model predictive control. Automatica 45(12):2823–2830

    Article  MathSciNet  MATH  Google Scholar 

  • Coello CAC (2002) Theoretical and numerical constraint handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287

    Article  MATH  Google Scholar 

  • Coello C, Becerra R (2003) Evolutionary multiobjective optimization using a cultural algorithm. In: Swarm intelligence symposium l, Indianapolis, pp 6–13

    Google Scholar 

  • Coello C, Pulido G, Kendall G (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Article  Google Scholar 

  • Deb K, Agrawal S, Pratab A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. KanGAL Rep. 200001, Indian Institute of Technology, Kanpur, India

    Google Scholar 

  • Durillo J, Nebro A, Coello Coello C, García-Nieto J, Luna F, Alba E (2010) A study of multi-objective metaheuristics when solving parameter scalable problems. IEEE Trans Evol Comput 14(4):618–635

    Article  Google Scholar 

  • Farina N, Deb K, Amato P (2004) Dynamic multi-objective optimization problems: test cases, approximations, and applications. IEEE Trans Evol Comput 8(5):425–439

    Article  Google Scholar 

  • Fletcher R, Leyffer S (1995) Solving mixed integer nonlinear programs by outer approximation. Math Program 66(3):327

    Article  MathSciNet  Google Scholar 

  • Floudas C (1995) Non-linear and mixed integer optimization. Oxford University Press, New York

    Google Scholar 

  • Goh CK, Tan KC, Liu DS, Chiam SC (2010) A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur J Oper Res 202(1):42–54

    Article  MATH  Google Scholar 

  • Haimes Y, Tarvainen K, Shima T, Thadatnil J (1990) Hierarchical multiobjective analysis of large-scale systems. Hemisphere Publishing Corp, New York

    Google Scholar 

  • Hu X, Eberhart R (2002) Multiobjective optimization using dynamic neighorhood particle swarm optimization. Evol Comput 2:1677–1681

    Google Scholar 

  • Karer G, Mušič G, Škrjanc I, Zupančič B (2007a) Hybrid fuzzy modeling for model predictive control. J Intell Robot Syst 50:297–319

    Article  Google Scholar 

  • Karer G, Mušič G, Škrjanc I, Zupančič B (2007b) Hybrid fuzzy model-based predictive control of temperature in a batch reactor. Comput Chem Eng 31(12):1552–1564

    Article  Google Scholar 

  • Kerrigan EC, Maciejowski JM (2002) Designing model predictive controllers with prioritised constraints and objectives, in computer aided control system design. In: Proceedings of 2002 I.E. international symposium, pp 33–38

    Google Scholar 

  • Kerrigan EC, Bemporad A, Mignone D, Morari M, Maciejowski JM (2000) Multi-objective priorisation and reconfiguration for the control of constrained hybrid systems. In: Proceedings of the American control conference, Chicago, IL, USA, pp 1694–1698

    Google Scholar 

  • Kimbrough S, Koehler G, Lu M, Wood D (2008) On a feasible–infeasible two-population (FI-2Pop) genetic algorithm for constrained optimization: distance tracing and no free lunch. IEEE Trans Evol Algorithms 190(2):310–327

    MathSciNet  MATH  Google Scholar 

  • Knowles J (2006) ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans Evol Comput 10(1):50–66

    Article  Google Scholar 

  • Man K, Tang K, Kwong S (1998) Genetic algorithms, concepts and designs. Springer, London

    Google Scholar 

  • Michalewicz Z, Nazhiyath G (1995) Genocop III: a co-evolutionary algorithm for numerical optimization with nonlinear constraints. In: Fogel DB (ed) Proceedings of the second IEEE international conference on evolutionary computation, IEEE Press, Piscataway, New Jersey, USA, pp 647–651

    Google Scholar 

  • Michalewicz Z, Schoenauer M (1995) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32

    Article  Google Scholar 

  • Núñez A, Sáez D, Oblak S, Skrjanc I (2009) Fuzzy-model-based hybrid predictive control. ISA Trans 48(1):24–31

    Article  Google Scholar 

  • Nunez-Reyes A, Scheffer-Dutra C, Bordons C (2002) Comparison of different predictive controllers with multi-objective optimization. Application to an olive oil mill. In: Proceedings of the 2002 international conference on control applications 2, Glasgow, Scotland, pp 1242–1247

    Google Scholar 

  • Potocnik B, Mušič G, Zupančič B (2004) Model predictive control systems with discrete inputs. In: Proceeding of12th IEEE mediterranean electrotechnical conference, Dubrovnik, Croatia, pp 383–386

    Google Scholar 

  • Raman R, Grossmann IE (1991) Relation between MILP modelling and logical inference for chemical process synthesis. Comput Chem Eng 15:73

    Article  Google Scholar 

  • Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5(1):96–101

    Article  Google Scholar 

  • Sarimveis H, Bafas G (2003) Fuzzy model predictive control of non-linear processes using genetic algorithms. Fuzzy Set Syst 139:59–80

    Article  MathSciNet  MATH  Google Scholar 

  • Sontag ED (1981) Nonlinear regulation: the piecewise linear approach. IEEE Trans. Automat. Control 26(2):346–158

    Google Scholar 

  • Tan K, Yang Y, Lee T (2003) A distributed cooperative coevolutionary algorithm for multiobjective optimization. Proc Congr Evol Comput (CEC) 4:2513–2520

    Google Scholar 

  • Zambrano D, Camacho E (2002) Application of MPC with multiple objective for a solar refrigeration plant. In: Proceedings of the 2002 international conference on control applications 2, pp 1230–1235

    Google Scholar 

  • Zhang L, Zhou C, Liu X, Ma Z, Liang Y (2003) Solving multiobjective optimization problems using particle swarm optimization. Evol Comput 4:2400–2405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo A. Núñez .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Núñez, A.A., Sáez, D.A., Cortés, C.E. (2013). Hybrid Predictive Control: Mono-objective and Multi-objective Design. In: Hybrid Predictive Control for Dynamic Transport Problems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-4351-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4351-2_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4350-5

  • Online ISBN: 978-1-4471-4351-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics