Skip to main content

Utilizing Flow Cytometry Effectively

  • Chapter
  • First Online:
Success in Academic Surgery: Basic Science

Part of the book series: Success in Academic Surgery ((SIAS))

  • 1204 Accesses

Abstract

Flow cytometry uses a laser-based instrument to measure optical and fluorescence characteristics of biological particles such as nuclei, microorganisms or latex beads, or single cells as they pass through a light source. The instrument looks like a microscope, but on the stage there is a capillary tube, so that as cells pass in single file they can be illuminated by the light emitted through the objective. In the 1950s several improvements were made to the prototype that allowed particles to be counted in suspension. Advancements continued in the 1960s with an instrument, still microscope-based, able to detect light from abnormal cells. At the end of the decade, however, the flow cytometer design was altered and no longer resembled a microscope. Although the appearance of the instrument had changed, it still functioned in the same fashion as the original prototype—i.e., illumination of cells as they passed through a beam of light in a single file. This overriding principle of flow cytometry—the illumination of cells (or particles) by a light source—has remained unchanged even though advances in technology have evolved the manner in which this is performed. This chapter serves to highlight the principles, clinical application, analysis, and future prospects of flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Givan AL. Flow cytometry: an introduction. Methods Mol Biol. 2011;699:1–29. doi:10.1007/978-1-61737-950-5_1. Review. PMID:21116976.

    Article  PubMed  CAS  Google Scholar 

  2. Moldavan A. Photo-electric technique for the counting of microscopical cells. Science. 1934;80:188–9.

    Article  PubMed  CAS  Google Scholar 

  3. Gucker Jr FT, O’Konski CT, Pickard HB, Pitts Jr JN. A photoelectronic counter for colloidal particles. J Am Chem Soc. 1947;69:2422–31.

    Article  PubMed  CAS  Google Scholar 

  4. Cornwall JB, Davison RM. Rapid counter for small particles in suspension. J Sci Instrum. 1950;37:414–7.

    Article  Google Scholar 

  5. Coulter WH. High speed automatic blood cell counter and analyzer. Proc Natl Electron Conf. 1956;12:1034–40.

    Google Scholar 

  6. Bierne T, Hutcheon JM. A photoelectric particle counter for use in the sieve range. J Sci Instrum. 1957;34:196–200.

    Article  Google Scholar 

  7. Kamentsky LA, Melamed MR. Spectrophotometer: new instrument for ultrarapid cell analysis. Science. 1965;150:630–1.

    Article  PubMed  CAS  Google Scholar 

  8. Kamentsky LA, Melamed MR. Spectrophotometric cell sorter. Science. 1967;156:1364–5.

    Article  PubMed  CAS  Google Scholar 

  9. Fulwyler MJ. Electronic separation of biological cells by volume. Science. 1965;150:910–1.

    Article  PubMed  CAS  Google Scholar 

  10. Dittrich W, Göhde W. Impulsfluorometrie dei einzelzellen in suspensionen. Z Naturforsch. 1969;24b:360–1.

    Google Scholar 

  11. Van Dilla MA, Trujillo TT, Mullaney PF, Coulter JR. Cell microfluorimetry: a method for rapid fluorescence measurement. Science. 1969;163:1213–4.

    Article  PubMed  Google Scholar 

  12. Hulett HR, Bonner WA, Barret J, Herzenberg LA. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science. 1969;166(3906):747–9.

    Article  PubMed  CAS  Google Scholar 

  13. Jaroszeski MJ, Radcliff G. Fundamentals of flow cytometry. Mol Biotechnol. 1999;11(1):37–53. Review.

    Article  PubMed  CAS  Google Scholar 

  14. Brown M, Wittwer C. Flow cytometry: principles and clinical applications in hematology. Clin Chem. 2000;46(8 Pt 2):1221–9.

    PubMed  CAS  Google Scholar 

  15. Delude RL. Flow cytometry. Crit Care Med. 2005;33(12 Suppl):S426–8. Review.

    Article  PubMed  Google Scholar 

  16. Preffer F, Dombkowski D. Advances in complex multiparameter flow cytometry technology: applications in stem cell research. Cytometry B Clin Cytom. 2009;76(5):295–314. doi:10.1002/cyto.b.20480. Review.

    PubMed  Google Scholar 

  17. Kawai T, Cosimi AB, Spitzer TR, Tolkoff-Rubin N, Suthanthiran M, Saidman SL, Shaffer J, Preffer FI, Ding R, Sharma V, Fishman JA, Dey B, Ko D, Hertl M, Goes NB, Wong W, Williams WW, Colvin RB, Sykes M, Sachs DH. Tolerance to HLA-mismatched renal allografts following combined kidney and bone marrow transplantation. N Engl J Med. 2008;358:353–61.

    Article  PubMed  CAS  Google Scholar 

  18. Jaye DL, Bray RA, Gebel HM, Harris WA, Waller EK. Translational applications of flow cytometry in clinical practice. J Immunol. 2012;188(10):4715–9. doi:10.4049/jimmunol.1290017. Review.

    Article  PubMed  CAS  Google Scholar 

  19. Waller EK, Rosenthal H, Jones TW, Peel J, Lonial S, Langston A, Redei I, Jurickova I, Boyer MW. Larger numbers of CD4(bright) dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. Blood. 2001;97(10):2948–56. Erratum in: Blood 2001 Sep 15;98(6):1677.

    Article  PubMed  CAS  Google Scholar 

  20. Reddy V, Winer AG, Eksioglu E, Meier-Kriesche HU, Schold JD, Wingard JR. Interleukin 12 is associated with reduced relapse without increased incidence of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11(12):1014–21.

    Article  PubMed  CAS  Google Scholar 

  21. Garovoy MR, Rheinschmidt MA, Bigos M, Perkins H, Colombe B, Feduska N, Salvatierra O. Flow cytometry analysis: a high technology crossmatch technique facilitating transplantation. Transplant Proc. 1983;15:1939–41.

    Google Scholar 

  22. Bray RA, Tarsitani C, Gebel HM, Lee JH. Clinical cytometry and progress in HLA antibody detection. Methods Cell Biol. 2011;103:285–310.

    Article  PubMed  CAS  Google Scholar 

  23. Lindemann M, Nyadu B, Heinemann FM, Kribben A, Paul A, Horn PA, Witzke O. High negative predicative value of an amplified flow cytometry crossmatch in living donor kidney transplantation. Hum Immunol. 2010;71:771–6.

    Article  PubMed  Google Scholar 

  24. Spellman S, Bray R, Rosen-Bronsen S, Haagenson M, Klein J, Flesh S, Vierra-Green C, Anasetti C. The detection of donor-directed HLA specific alloantibodies in recipients of unrelated hematopoietic cell transplantation is predictive of graft failure. Blood. 2010;115:2704–8.

    Article  PubMed  CAS  Google Scholar 

  25. Ciurea SO, deLima M, Cano P, Korbling M, Giralt S, Shpall EJ, Wang X, Thall PF, Champlin RE, Fernandez-Vina M. High risk of graft failure in patients with anti-HLA antibodies undergoing haploidentical stem-cell transplantation. Transplantation. 2009;88:1019–24.

    Article  PubMed  CAS  Google Scholar 

  26. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol. 1984;133:157–65.

    PubMed  CAS  Google Scholar 

  27. De Rosa SC, Brenchley JM, Roederer M. Beyond six colors: a new era in flow cytometry. Nat Med. 2003;9(1):112–7.

    Article  PubMed  Google Scholar 

  28. Chattopadhyay PK, Roederer M. Good cell, bad cell: flow cytometry reveals T-cell subsets important in HIV disease. Cytometry A. 2010;77(7):614–22. doi:10.1002/cyto.a.20905.

    PubMed  Google Scholar 

  29. Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA, Herzenberg LA. CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest. 1995;95(5):2061–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Mathes MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Swearingen, B.J., Mathes, D.W. (2014). Utilizing Flow Cytometry Effectively. In: Kibbe, M., LeMaire, S. (eds) Success in Academic Surgery: Basic Science. Success in Academic Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4736-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4736-7_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4735-0

  • Online ISBN: 978-1-4471-4736-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics