Skip to main content

Slavnov Determinants, Yang–Mills Structure Constants, and Discrete KP

  • Conference paper
Symmetries, Integrable Systems and Representations

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 40))

Abstract

Using Slavnov’s scalar product of a Bethe eigenstate and a generic state in closed XXZ spin-\(\frac{1}{2}\) chains, with possibly twisted boundary conditions, we obtain determinant expressions for tree-level structure constants in 1-loop conformally-invariant sectors in various planar (super) Yang-Mills theories. When certain rapidity variables are allowed to be free rather than satisfy Bethe equations, these determinants become discrete KP τ-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Superstrings with tree-level interactions only, and no spacetime loops.

  2. 2.

    The limit in which the number of colours N c →∞, the gauge coupling g YM →0, while the ’t Hooft coupling \(\lambda= g^{2}_{\mathit{YM}} N_{c}\) remains finite.

  3. 3.

    Further highlights of integrability in modern quantum field theory and in string theory include (1) Classical integrable hierarchies in matrix models of non-critical strings, from the late 1980’s [10], (2) Finite gap solutions in Seiberg-Witten theory of low-energy SYM2 in the mid 1990’s [1114], (3) Integrability in QCD scattering amplitudes in the mid 1990’s [8, 1517], (4) Free fermion methods in works of Nekrasov, Okounkov, Nakatsu, Takasaki and others on Seiberg-Witten theory, in the 2000’s [18, 19], (5) Integrable spin chains in works of Nekrasov, Shatashvili and others on SYM2, in the 2000’s [20], (6) Integrable structures, particularly the Yangian, that appear in recent studies of SYM4 scattering amplitudes [21, 22]. There are many more.

  4. 4.

    In this work, we restrict our attention to this class of local composite operators. In particular, we do not consider descendants or operators with non-zero spin, for which the 2-point and 3-point functions are different.

  5. 5.

    Three operators \(\mathcal{O}_{i}\), of length L i , i∈{1,2,3}, are non-extremal if l ij =L i +L j L k >0.

  6. 6.

    The SYM4 expression of [29] is a special case of the general expression obtained here.

  7. 7.

    There are definitely more gauge theories that are conformally-invariant at 1-loop or more, with SU(2) sectors that map to states in spin-\(\frac{1}{2}\) chains. Here we consider only samples of theories with different supersymmetries and operator content.

  8. 8.

    XXX spin-\(\frac{1}{2}\) chains are XXZ spin-\(\frac{1}{2}\) chains with an anisotropy parameter Δ=1.

  9. 9.

    The fact that the structure constants in these two types of theories should be handled differently was pointed out to us by C. Ahn and R. Nepomechie.

  10. 10.

    In [29], S[L,N 1,N 2] was denoted by S[L,{N}].

  11. 11.

    Minahan and Zarembo obtained their remarkable result in the context of the complete scalar sector of SYM4. The relevant spin chain in that case is SO(6) symmetric. Here we focus our attention on the restriction of their result to the SU(2) scalar subsector.

  12. 12.

    We are interested in local single-trace composite operators that consist of many fundamental fields. These fields are interacting. In a weakly-interacting quantum field theory, one can consistently choose to ignore all interactions beyond a chosen order in perturbation theory. In the planar theory under consideration, perturbation theory can be arranged according to the number of loops in Feynman diagrams computed. In a 1-loop approximation, one keeps only 1-loop diagrams.

  13. 13.

    We use β in two different ways. 1. To indicate the deformation parameter in \(\mathrm{SYM}_{4}^{\beta}\) theories, and 2. To indicate that a certain state is a Bethe eigenstate of the spin-chain Hamiltonian. There should be no confusion with 1, in which β is a parameter but never a subscript, while in 2 it is always a subscript.

  14. 14.

    To simplify the notation, we use N 1, N 2 and N 3=N 1N 2, instead of the corresponding notation used in [42, 43]. These variables match the corresponding ones in Sect. 5.

  15. 15.

    The weights of the six-vertex model (52) and the entries of the XXZ R-matrix (12) are identical. This is the origin of the connection between the two models. We have chosen to write down these functions twice for clarity and to emphasize this fact.

  16. 16.

    For visual clarity, we have allowed for a gap between the B-lines and the C-lines in Fig. 5. There is also a gap between the N 3-th and (N 3+1)-th vertical lines, where N 3=3 in the example shown, that indicates separate portions of the lattice that will be relevant shortly. The reader should ignore this at this stage.

  17. 17.

    The following result does not require that any set of rapidities satisfy Bethe equations.

  18. 18.

    The conclusion that, in order to obtain a determinant formula, one of the single-trace operators should be BPS-like, was obtained in discussions with C. Ahn and R. Nepomechie.

References

  1. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1980). hep-th/9711200

    MathSciNet  Google Scholar 

  2. Bena, I., Polchinski, J., Roiban, R.: Hidden symmetries of the AdS(5)×S5 superstring. Phys. Rev. D 69, 046002 (2004). hep-th/0305116

    Article  MathSciNet  Google Scholar 

  3. Tseytlin, A.: Review of AdS/CFT integrability, Chapter II.1: classical AdS5×S 5 string solutions. arXiv:1012.3986, and references therein

  4. Minahan, J.A., Zarembo, K.: The Bethe-ansatz for N=4 super Yang-Mills. J. High Energy Phys. 0303, 013 (2003). hep-th/0212208

    Article  MathSciNet  Google Scholar 

  5. Beisert, N., Kristjansen, C., Staudacher, M.: The dilatation operator of N=4 super Yang-Mills theory. Nucl. Phys. B 664, 131 (2003). hep-th/0303060

    Article  MathSciNet  MATH  Google Scholar 

  6. Beisert, N., Staudacher, M.: The \(\mathcal{N} = 4\) SYM integrable super spin chain. Nucl. Phys. B 670, 439 (2003). hep-th/0307042

    Article  MathSciNet  MATH  Google Scholar 

  7. Belitsky, A.V., Derkachov, S.E., Korchemsky, G.P., Manashov, A.N.: Dilatation operator in (super-)Yang-Mills theories on the light-cone. Nucl. Phys. B 708, 115 (2005). hep-th/0409120

    Article  MathSciNet  MATH  Google Scholar 

  8. Korchemsky, G.P.: Review of AdS/CFT integrability, Chapter IV.4: integrability in QCD and \(\mathcal{N} < 4 \) SYM. arXiv:1012.4000, and references therein

  9. Beisert, N., et al.: Review of AdS/CFT integrability: an overview. arXiv:1012.3982, and the reviews that it introduces

  10. Ginsparg, P., Moore, G.: Lectures on 2D gravity and 2D string theory (TASI 1992). In: Di Francesco, P., Ginsparg, P., Zinn-Justin, J. (eds.) 2D Gravity and Random Matrices. arXiv:hep-th/9304011, hep-th/9306153

  11. Seiberg, N., Witten, E.: Monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19–52 (1994). Erratum-ibid B 430, 485–486 (1994). hep-th/9407087

    Article  MathSciNet  MATH  Google Scholar 

  12. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994). hep-th/9408099

    Article  MathSciNet  MATH  Google Scholar 

  13. Gorsky, A., Krichever, I., Marshakov, A., Mironov, A., Morozov, A.: Integrability and Seiberg-Witten exact solution. Phys. Lett. B 355, 466–474 (1995). hep-th/9505035

    Article  MathSciNet  MATH  Google Scholar 

  14. Marshakov, A.: Seiberg-Witten Theory and Integrable Systems. World Scientific, Singapore (1999), and references therein

    Book  MATH  Google Scholar 

  15. Lipatov, L.N.: High energy asymptotics of multi-colour QCD and exactly solvable lattice models. JETP Lett. 59, 596 (1994). hep-th/9311037

    Google Scholar 

  16. Faddeev, L.D., Korchemsky, G.P.: High energy QCD as a completely integrable model. Phys. Lett. B 342, 311 (1995). hep-th/9404173

    Article  Google Scholar 

  17. Korchemsky, G.P.: Bethe ansatz for QCD pomeron. Nucl. Phys. B 443, 255 (1995). hep-ph/9501232

    Article  Google Scholar 

  18. Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions. In: Etingof, P., Retakh, V., Singer, I.M. (eds.) The Unity of Mathematics: In Honor of the Ninetieth Birthday of I.M. Gelfand. Progress in Mathematics, vol. 244, pp. 525–596 (2006). hep-th/0306238

    Google Scholar 

  19. Nakatsu, T., Takasaki, K.: Melting crystal, quantum torus and Toda hierarchy. Commun. Math. Phys. 285, 445–468 (2009). arXiv:0710.5339, and references therein

    Article  MathSciNet  MATH  Google Scholar 

  20. Nekrasov, N., Shatashvili, S.: Quantization of integrable systems and four dimensional gauge theories. arXiv:0908.4052, and references therein

  21. Drummond, J.M.: Dual superconformal symmetry. arXiv:1012.4002

  22. Alday, L.F.: Scattering amplitudes at strong coupling. arXiv:1012.4003

  23. Okuyama, K., Tseng, L.S.: Three-point functions in N=4 SYM theory at one-loop. J. High Energy Phys. 0408, 055 (2004). hep-th/0404190

    Article  MathSciNet  Google Scholar 

  24. Roiban, R., Volovich, A.: Yang-Mills correlation functions from integrable spin chains. J. High Energy Phys. 0409, 032 (2004). hep-th/0407140

    Article  MathSciNet  Google Scholar 

  25. Alday, L.F., David, J.R., Gava, E., Narain, K.S.: Structure constants of planar N=4 Yang Mills at one loop. J. High Energy Phys. 0509, 070 (2005). hep-th/0502186

    Article  MathSciNet  Google Scholar 

  26. Escobedo, J., Gromov, N., Sever, A., Vieira, P.: Tailoring three-point functions and integrability. J. High Energy Phys. 1109, 28 (2011). arXiv:1012.2475

    Article  MathSciNet  Google Scholar 

  27. Escobedo, J., Gromov, N., Sever, A., Vieira, P.: Tailoring three-point functions and integrability II. Weak/strong coupling match. J. High Energy Phys. 1109, 29 (2011). arXiv:1104.5501

    Article  MathSciNet  Google Scholar 

  28. Gromov, N., Sever, A., Vieira, P.: Tailoring three-point functions and integrability III. Classical tunneling. J. High Energy Phys. 1207, 44 (2012). arXiv:1111.2349

    Article  Google Scholar 

  29. Foda, O.: \(\mathcal{N} = 4\) SYM structure constants as determinants. J. High Energy Phys. 1203, 96 (2012). arXiv:1111.4663

    Google Scholar 

  30. Brink, L., Schwarz, J.H., Scherk, J.: Supersymmetric Yang-Mills theories. Nucl. Phys. B 121, 77 (1977)

    Article  MathSciNet  Google Scholar 

  31. Minahan, J.A.: Review of AdS/CFT integrability, Chapter I.1: spin chains in N=4 Super Yang-Mills. arxiv:1012.3983, and references therein

  32. Leigh, R.G., Strassler, M.J.: Exactly marginal operators and duality in four-dimensional N=1 supersymmetric gauge theory. Nucl. Phys. B 447, 95 (1995). hep-th/9503121

    Article  MathSciNet  MATH  Google Scholar 

  33. Zoubos, K.: Deformations, orbifolds and open boundaries. arXiv:1012.3998

  34. Berenstein, D., Cherkis, S.A.: Deformations of N=4 SYM and integrable spin chain models. Nucl. Phys. B 702, 49–85 (2004). arXiv:hep-th/0405215

    Article  MathSciNet  MATH  Google Scholar 

  35. Kachru, S., Silverstein, E.: 4d conformal theories and strings on orbifolds. Phys. Rev. Lett. 80, 4855 (1998). hep-th/9802183

    Article  MathSciNet  MATH  Google Scholar 

  36. Lawrence, A.E., Nekrasov, N., Vafa, C.: On conformal field theories in four dimensions. Nucl. Phys. B 533, 199 (1998). hep-th/9803015

    Article  MathSciNet  MATH  Google Scholar 

  37. Ideguchi, K.: Semiclassical strings on AdS(5) x S**5/Z(M) and operators in orbifold field theories. J. High Energy Phys. 0409, 008 (2004). hep-th/0408014

    Article  MathSciNet  Google Scholar 

  38. Beisert, N., Roiban, R.: The Bethe ansatz for Z(S) orbifolds of \(\mathcal{N} = 4\) super Yang-Mills theory. J. High Energy Phys. 0511, 037 (2005). hep-th/0510209

    Article  MathSciNet  Google Scholar 

  39. Di Vecchia, P., Tanzini, A.: \(\mathcal{N} = 2\) super Yang-Mills and the XXZ spin chain. J. Geom. Phys. 54, 116–130 (2005). hep-th/0405262

    Article  MathSciNet  MATH  Google Scholar 

  40. Maldacena, J.: The gauge/gravity duality. arXiv:1106.6073

  41. Beisert, N.: Superconformal algebra. arXiv:1012.4004

  42. Kitanine, N., Maillet, J.M., Terras, V.: Form factors of the XXZ Heisenberg spin-\(\frac{1}{2}\) finite chain. Nucl. Phys. B 554, 647–678 (1999). math-ph/9807020

    Article  MathSciNet  MATH  Google Scholar 

  43. Wheeler, M.: An Izergin–Korepin procedure for calculating scalar products in six-vertex models. Nucl. Phys. B 852, 468–507 (2011). arXiv:1104.2113

    Article  MATH  Google Scholar 

  44. Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  45. Slavnov, N.A.: Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz. Theor. Math. Phys. 79, 502–508 (1989)

    Article  MathSciNet  Google Scholar 

  46. Korepin, V.E.: Calculation of norms of Bethe wave functions. Commun. Math. Phys. 86, 391–418 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  47. Foda, O., Schrader, G.: XXZ scalar products, Miwa variables and discrete KP. In: Feigin, B., Jimbo, M., Okado, M. (eds.) New Trends in Quantum Integrable Systems, pp. 61–80. World Scientific, Singapore (2010). arXiv:1003.2524

    Google Scholar 

  48. Ohta, Y., Hirota, R., Tsujimoto, S., Inami, T.: Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy. J. Phys. Soc. Jpn. 62, 1872–1886 (1993)

    Article  MATH  Google Scholar 

  49. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  50. Izergin, A.G.: Partition function of the six-vertex model in a finite volume. Sov. Phys. Dokl. 32, 878–879 (1987)

    Google Scholar 

  51. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Dover, New York (2008)

    Google Scholar 

  52. Georgiou, G., Gili, V., Grossardt, A., Plefka, J.: Three-point functions in planar N=4 super Yang-Mills Theory for scalar operators up to length five at the one-loop order. arXiv:1201.0992

  53. Gromov, N., Vieira, P.: Quantum integrability for three-point functions. arXiv:1202.4103

  54. Gromov, N., Vieira, P.: Tailoring three-point functions and integrability IV. Theta-morphism. arXiv:1205.5288

  55. Ahn, C., Foda, O., Nepomechie, R.: OPE in planar QCD from integrability. J. High Energy Phys. 1206, 168 (2012). arXiv:1202.6553

    Article  Google Scholar 

  56. Kostov, I.: Classical limit of the three-point function from integrability. arXiv:1203.6180

  57. Kostov, I.: Three-point function of semiclassical states at weak coupling. arXiv:1205.4412

Download references

Acknowledgements

O.F. thanks C. Ahn, N. Gromov, G. Korchemsky, I. Kostov, R. Nepomechie, D. Serban, P. Vieira and K. Zarembo for discussions on the topic of this work and the Inst. H. Poincare for hospitality where it started. Both authors thank the Australian Research Council for financial support, and the anonymous referee for remarks that helped us improve the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Foda .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor M. Jimbo on his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

Foda, O., Wheeler, M. (2013). Slavnov Determinants, Yang–Mills Structure Constants, and Discrete KP. In: Iohara, K., Morier-Genoud, S., Rémy, B. (eds) Symmetries, Integrable Systems and Representations. Springer Proceedings in Mathematics & Statistics, vol 40. Springer, London. https://doi.org/10.1007/978-1-4471-4863-0_5

Download citation

Publish with us

Policies and ethics