Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Some metal oxide semiconductors attract attention for its better performance in certain reactions compared to TiO2, due to a more suitable band gap, higher adsorption of the reactants on their surface and to a more convenient product distribution. For instance, the interest on ZnO lays on its high quantum efficiency and for its higher electron mobility which is interesting for dye-sensitized solar cells. WO3 is a visible light-response photocatalyst and under certain conditions may present higher photoactivity than titania under solar irradiation. It is a runner up for the water splitting reaction. Recent applications of WO3 exploit its storage ability as an electron pool for metal protection and bactericidal activity in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe R, Takami H, Murakami N, Ohtani B (2008) Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. JACS 130:7780–7781

    Article  Google Scholar 

  • Aithal US, Aminabhavi TM, Shukla SS (1993) Photomicroelectrochemical detoxification of hazardous materials. J Hazard Mater 33:369–400

    Article  Google Scholar 

  • Akyol A, Bayramoglu M (2010) Performance comparison of ZnO photocatalyst in various reactor systems. J Chem Technol Biotechnol 85:1455–1462

    Google Scholar 

  • Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS (2011) An effective nanocomposite of polyaniline and ZnO: preparation, characterizations, and its photocatalytic activity. Colloid Polym Sci 289:415–421

    Article  Google Scholar 

  • Anik M, Cansizoglu T (2006) Dissolution kinetics of WO3 in acidic solutions. J Appl Electrochem 36:603–608

    Article  Google Scholar 

  • Arai T, Yanagida M, Konishi Y, Ikura A, Iwasaki Y, Sugihara H, Sayama K (2008a) The enhancement of WO3-catalyzed photodegradation of organic substances utilizing the redox cycle of copper ions. Appl Catal B 84:42–47

    Article  Google Scholar 

  • Arai T, Yanagida M, Konishi Y, Sugihara H, Sayama K (2008b) Utilization of Fe3+/Fe2+ redox for the photodegradation of organic substances over WO3 photocatalyst and for H2 production from the electrolysis of water. Electrochemistry 76:128–131

    Article  Google Scholar 

  • Ashkarran AA, Afshar SAA, Aghigh SM, Kavianipour M (2010) Photocatalytic activity of ZrO2 nanoparticles prepared by electrical arc discharge method in water. Polyhedron 29:1370–1374

    Article  Google Scholar 

  • Baeck SH, Choi KS, Jaramillo TF, Stucky GD, McFarland EW (2003) Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv Mater 15:1269–1270

    Article  Google Scholar 

  • Bahnemann DW, Kormann C, Hoffmann MR (1987) Preparation and characterization of quantum size zinc-oxide: a detailed spectroscopic study. J Phys Chem 91:3789–3798

    Article  Google Scholar 

  • Bamwenda GR, Arakawa H (2001) The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in the presence of Ce4+/Ce3+. Sol Energy Mater Sol Cells 70:1–14

    Article  Google Scholar 

  • Bamwenda GR, Sayama K, Arakawa H (1999) The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3–Fe2+–Fe3+ aqueous suspension. J Photochem Photobiol, A 122:175–183

    Article  Google Scholar 

  • Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001

    Article  Google Scholar 

  • Berger S, Tsuchiya H, Ghicov A, Schmuki P (2006) High photocurrent conversion efficiency in self-organized porous WO3. Appl Phys Lett 88:203119

    Article  Google Scholar 

  • Beverskog B, Puigdomenech I (1997) Revised Pourbaix diagrams for Zinc at 25–300°C. Corros Sci 39:107–114

    Article  Google Scholar 

  • Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  Google Scholar 

  • Butler MA (1977) Photoelectrolysis and physical properties of semiconducting electrode WO3. J Appl Phys 48:1914–1920

    Article  Google Scholar 

  • Butler MA, Nasby RD, Quinn RK (1976) Tungsten trioxide as an electrode for photoelectrolysis of water. Solid State Commun 19:1011–1014

    Article  Google Scholar 

  • Chen D, Ye JH (2008) Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties. Adv Funct Mater 18:1922–1928

    Article  Google Scholar 

  • Comparelli R, Fanizza E, Curri ML, Cozzoli PD, Mascolo G, Agostiano A (2005) UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Appl Catal B 60:1–11

    Article  Google Scholar 

  • Coronado JM, Maira AJ, Martinez-Arias A, Conesa JC, Soria J (2002) EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts. J Photochem Photobiol, A 150:213–221

    Article  Google Scholar 

  • Cristino V, Caramori S, Argazzi R, Meda L, Marra GL, Bignozzi CA (2011) Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes. Langmuir 27:7276–7284

    Article  Google Scholar 

  • Cross WB, Parkin IP, O’Neill SA, Williams PA, Mahon MF, Molloy KC (2003) Tungsten oxide coatings from the aerosol-assisted chemical vapor deposition of W(OAr)6 (Ar=C6H5, C6H4F-4, C6H3F2-3,4); photocatalytically active gamma-WO3 films. Chem Mater 15:2786–2796

    Article  Google Scholar 

  • Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212:3–29

    Article  Google Scholar 

  • Doerffler W, Hauffe K (1964a) Heterogeneous photocatalysis. 1 The influence of oxidizing and reducing gases on the electrical conductivity of dark and illuminated zinc oxide surfaces. J Catal 3:156–170

    Article  Google Scholar 

  • Doerffler W, Hauffe K (1964b) Heterogeneous photocatalysis. 2 The mechanism of the carbon monoxide oxidation at dark and illuminated zinc oxide surfaces. J Catal 3:171–178

    Article  Google Scholar 

  • Domenech J, Andres M (1987) Elimination of Hg(II) ions from aqueous-solutions by photocatalytic reduction over ZnO powder. New J Chem 11:443–447

    Google Scholar 

  • Domenech J, Munoz J (1987) Photocatalytical reduction of Cr(VI) over ZnO powder. Electrochim Acta 32:1383–1386

    Article  Google Scholar 

  • Domenech J, Peral J (1988) Removal of toxic cyanide from water by heterogeneous photocatalytic oxidation over ZnO. Sol Energy 41:55–59

    Article  Google Scholar 

  • Domenech J, Prieto A (1986) Stability of ZnO particles in aqueous suspensions under IV illumination. J Phys Chem 90:1123–1126

    Article  Google Scholar 

  • Driessen MD, Goodman AL, Miller TM, Zaharias GA, Grassian VH (1998) Gas-phase photooxidation of trichloroethylene on TiO2 and ZnO: influence of trichloroethylene pressure, oxygen pressure, and the photocatalyst surface on the product distribution. J Phys Chem B 102:549–556

    Article  Google Scholar 

  • Filimonov VN (1964) Photocatalytic oxidation of gaseous isopropanol on ZnO+TiO2. Dokl Akad Nauk SSSR 154:922–923

    Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  Google Scholar 

  • Fujita Y, Kwan T (1958) Photodesorption and photoadsorption of oxygen on zinc oxide. Bull Chem Soc Jpn 31:379–380

    Article  Google Scholar 

  • Goux A, Pauporte T, Chivot J, Lincot D (2005) Temperature effects on ZnO electrodeposition. Electrochim Acta 50:2239–2248

    Article  Google Scholar 

  • Gray TJ, Amigues P (1969) Photocatalysis and electronic structure of zinc oxide. Surf Sci 13:209–210

    Article  Google Scholar 

  • Guo Y, Quan X, Lu N, Zhao H, Chen S (2007) High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes. Environ Sci Technol 41:4422–4427

    Article  Google Scholar 

  • Gupta J, Barick KC, Bahadur D (2011) Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures. J Alloy Compd 509:6725–6730

    Article  Google Scholar 

  • Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  Google Scholar 

  • Hayat K, Gondal MA, Khaled MM, Ahmed S (2011) Effect of operational key parameters on photocatalytic degradation of phenol using nano nickel oxide synthesized by sol-gel method. J Mol Catal A 336:64–71

    Article  Google Scholar 

  • Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  Google Scholar 

  • Hepel M, Hazelton S (2005) Photoelectrocatalytic degradation of diazo dyes on nanostructured WO3 electrodes. Electrochim Acta 50:5278–5291

    Article  Google Scholar 

  • Hepel M, Luo J (2001) Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes. Electrochim Acta 47:729–740

    Article  Google Scholar 

  • Hernández-Alonso MD, Hungría AB, Martínez-Arias A, Fernández-García M, Coronado JM, Conesa JC, Soria J (2004) EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation. Appl Catal B 50:167–175

    Article  Google Scholar 

  • Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  Google Scholar 

  • Ho GW, Chua KJ, Siow DR (2012) Metal loaded WO3 particles for comparative studies of photocatalysis and electrolysis solar hydrogen production. Chem Eng J 181:661–666

    Article  Google Scholar 

  • Hodes G, Cahen D, Manassen J (1976) Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). Nature 260:312–313

    Article  Google Scholar 

  • Hoffman AJ, Carraway ER, Hoffmann MR (1994) Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environ Sci Technol 28:776–785

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  • Hou Y, Wu L, Wang X, Ding Z, Li Z, Fu X (2007) Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air. J Catal 250:12–18

    Article  Google Scholar 

  • Howard CJ, Luca V, Knight KS (2002) High-temperature phase transitions in tungsten trioxide—the last word? J Phys: Condens Matter 14:377–387

    Article  Google Scholar 

  • Hu X, Li G, Yu JC (2010) Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26:3031–3039

    Article  Google Scholar 

  • Ivankovic S, Gotic M, Jurin M, Music S (2003) Photokilling squamous carcinoma cells SCCVII with ultrafine particles of selected metal oxides. J Sol-Gel Sci Technol 27:225–233

    Article  Google Scholar 

  • Ji P, Zhang J, Chen F, Anpo M (2009) Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl Catal B 85:148–154

    Article  Google Scholar 

  • Jing LQ, Xu ZL, Shang J, Sun XJ, Cai WM, Guo HC (2002) The preparation and characterization of ZnO ultrafine particles. Mater Sci Eng A, Struct Mater, Prop Microstruct Process 332:356–361

    Article  Google Scholar 

  • Jing LQ, Wang BQ, Xin BF, Li SD, Shi KY, Cai WM, Fu HG (2004) Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd. J Solid State Chem 177:4221–4227

    Article  Google Scholar 

  • Kansal SK, Ali AH, Kapoor S (2010) Photocatalytic decolorization of biebrich scarlet dye in aqueous phase using different nanophotocatalysts. Desalination 259:147–155

    Article  Google Scholar 

  • Khalil LB, Mourad WE, Rophael MW (1998) Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl Catal B 17:267–273

    Article  Google Scholar 

  • Khodja AA, Sehili T, Pilichowski JF, Boule P (2001) Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem and Photobiol A 141:231–239

    Article  Google Scholar 

  • Khyzhun OY, Solonin YM, Dobrovolsky VD (2001) Electronic structure of hexagonal tungsten trioxide: XPS, XES, and XAS studies 320:1–6

    Google Scholar 

  • Kim H, Senthil K, Yong K (2010) Photoelectrochemical and photocatalytic properties of tungsten oxide nanorods grown by thermal evaporation. Mater Chem Phys 120:452–455

    Article  Google Scholar 

  • Kislov N, Lahiri J, Verma H, Goswami DY, Stefanakos E, Batzill M (2009) Photocatalytic degradation of methyl orange over single crystalline ZnO: orientation dependence of photoactivity and photostability of ZnO. Langmuir 25:3310–3315

    Article  Google Scholar 

  • Kodama S, Yabuta M, Kubokawa Y (1982) Photocatalytic isomerization of butenes over TiO2 and ZnO. Chem Lett 11:1671–1674

    Article  Google Scholar 

  • Kodama S, Yabuta M, Anpo M, Kubokawa Y (1985) Photocatalytic isomerization of butenes over ZnO and SnO2. Bull Chem Soc Jpn 58:2307–2310

    Article  Google Scholar 

  • Kominami H, Yabutani K, Yamamoto T, Kara Y, Ohtani B (2001) Synthesis of highly active tungsten (VI) oxide photocatalysts for oxygen evolution by hydrothermal treatment of aqueous tungstic acid solutions. J Mater Chem 11:3222–3227

    Article  Google Scholar 

  • Kominami H, Kato J, Murakami S, Ishii Y, Kohno M, Yabutani K, Yamamoto T, Kera Y, Inoue M, Inui T, Ohtani B (2003) Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities. Catal Today 84:181–189

    Article  Google Scholar 

  • Kormann C, Bahnemann DW, Hoffmann MR (1988) Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand. Envion Sci Technol 22:798–806

    Article  Google Scholar 

  • Lacoste J, Arnaud R, Lemaire J (1982) Modelization of the photocatalyzed oxidation of polyolefins. 1. ZnO and TiO2 photocatalyzed oxidation of normal-heptane. CR Acad Sci, Ser IIc: Chim 295:1087–1088

    Google Scholar 

  • Lacoste J, Arnaud R, Lemaire J (1984) Modelization of photocatalyzed oxidation of polyolefins. 2. ZnO and TiO2 photocatalyzed decomposition of tert-butyl hydroperoxide and atactic polypropylene hydroperoxides. J Polym Sci, Part A: Polym Chem 22:3885–3893

    Article  Google Scholar 

  • Lacoste J, Singh RP, Boussand J, Arnaud R (1987) TiO2-photocatalyzed, ZnO-photocatalyzed, and CdS-photocatalyzed oxidation of ethylene-propylene thermoplastic elastomers. J Polym Sci, Part A: Polym Chem 25:2799–2812

    Article  Google Scholar 

  • Lacoste J, Arnaud R, Singh RP, Lemaire J (1988) Modelization of photocatalyzed oxidation of polyolefins. 3. Oxidation of model hydrocarbons with ZnO. Macromol Chem Phys 189:651–661

    Article  Google Scholar 

  • Lee GH, Kawazoe T, Ohtsu M (2002) Difference in optical band gap between zinc-blende and wurtzite ZnO structure formed on sapphire (0001) substrate. Solid State Commun 124:163–165

    Article  Google Scholar 

  • Li BX, Wang YF (2010) Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures. J Phys Chem C 114:890–896

    Article  Google Scholar 

  • Li L, Krissanasaeranee M, Pattinson SW, Stefik M, Wiesner U, Steiner U, Eder D (2010) Enhanced photocatalytic properties in well-ordered mesoporous WO3. Chem Commun 46:7620–7622

    Article  Google Scholar 

  • Lillard RS, Kanner GS, Butt DP (1998) The nature of oxide films on tungsten in acidic and alkaline solutions. J Electrochem Soc 145:2718–2725

    Article  Google Scholar 

  • Lin HF, Liao SC, Hung SW (2005) The DC thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J Photochem Photobiol A 174:82–87

    Article  Google Scholar 

  • Liu HL, Yang TCK (2003) Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process Biochem 39:475–481

    Article  Google Scholar 

  • Liu J-X, Dong X-L, Liu X-W, Shi F, Yin S, Sato T (2011a) Solvothermal synthesis and characterization of tungsten oxides with controllable morphology and crystal phase. J Alloys Compd 509:1482–1488

    Article  Google Scholar 

  • Liu R, Lin Y, Chou L-Y, Sheehan SW, He W, Zhang F, Hou HJM, Wang D (2011b) Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew Chem Int Ed 50:499–502

    Article  Google Scholar 

  • Locherer KR, Swainson IP, Salje EKH (1999) Phase transitions in tungsten trioxide at high temperatures—a new look. J Phys: Condens Matter 11:6737–6756

    Article  Google Scholar 

  • Long TF, Takabatake K, Yin S, Sato T (2009a) Mild solvothermal synthesis and characterization of ZnO crystals with various morphologies on borosilicate glass substrate. J Cryst Growth 311:576–579

    Article  Google Scholar 

  • Long TF, Yin S, Takabatake K, Zhnag P, Sato T (2009b) Synthesis and characterization of ZnO nanorods and nanodisks from zinc chloride aqueous solution. Nanoscale Res Lett 4:247–253

    Article  Google Scholar 

  • Ma PY, Wu Y, Fu ZY, Wang WM (2011) Shape-controlled synthesis and photocatalytic properties of three-dimensional and porous zinc oxide. J Alloys Compd 509:3576–3581

    Article  Google Scholar 

  • Maeda K, Domen K (2010) Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light. Chem Mater 22:612–623

    Article  Google Scholar 

  • Maldotti A, Andreotti L, Molinari A, Tollari S, Penoni A, Cenini S (2000) Photochemical and photocatalytic reduction of nitrobenzene in the presence of cyclohexene. J Photochem Photobiol A 133:129–133

    Article  Google Scholar 

  • Minero C, Pelizzetti E, Piccinini P, Vincenti M (1994) Photocatalyzed transformation of nitrobenzene on TiO2 and ZnO. Chemosphere 28:1229–1244

    Article  Google Scholar 

  • Mitchnick MA, Fairhurst D, Pinnell SR (1999) Microfine zinc oxide (Z-Cote) as a photostable UVA/UVB sunblock agent. J Am Acad Dermatol 40:85–90

    Article  Google Scholar 

  • Miyauchi M, Nakajima A, Watanabe T, Hashimoto K (2002) Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem Mater 14:2812–2816

    Article  Google Scholar 

  • Morrison SR, Freund T (1967) Chemical role of holes and electrons in ZnO photocatalysis. J Chem Phys 47:1543–1551

    Article  Google Scholar 

  • Muller HD, Steinbac F (1970) Decomposition of isopropyl alcohol photosensitized by zinc oxide. Nature 225:728–729

    Article  Google Scholar 

  • Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Article  Google Scholar 

  • Pardeshi SK, Patil AB (2008) A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Sol Energy 82:700–705

    Article  Google Scholar 

  • Pelizzetti E, Borgarello M, Minero C, Pramauro E, Borgarello E, Serpone N (1988) Photocatalytic degradation of polychlorinated dioxins and polychlorinated-biphenyls in aqueous suspensions of semiconductors irradiation with simulated solar light. Chemosphere 17:499–510

    Article  Google Scholar 

  • Penot G, Arnaud R, Lemaire J (1983) ZnO-photocatalyzed oxidation of isotactic polypropylene. Angew Makromol Chem 117:71–84

    Article  Google Scholar 

  • Peralta-Zamora P, Gomes de Moraes S, Reyes J, Durán N (1996) Heterogeneous photocatalysis treatment of Kraft and textile effluents using metallic and polymeric semiconductors (ZnO and polyaniline) Polym Bull 37:531–537

    Article  Google Scholar 

  • Pichat P (1994) Partial or complete heterogeneous photocatalytic oxidation of organic-compounds in liquid organic or aqueous phases. Catal Today 19:313–333

    Article  Google Scholar 

  • Pichat P, Herrmann JM, Disdier J, Mozzanega MN (1979) Photocatalytic oxidation of propene over various oxides at 320 K: Selectivity. J Phys Chem 83:3122–3126

    Article  Google Scholar 

  • Prado AGS, Bolzon LB, Pedroso CP, Moura AO, Costa LL (2008) Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl Catal B 82:219–224

    Article  Google Scholar 

  • Qiu RL, Zhang DD, Mo YQ, Song L, Brewer E, Huang XF, Xiong Y (2008) Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J Hazard Mater 156:80–85

    Article  Google Scholar 

  • Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170:560–569

    Article  Google Scholar 

  • Roger A, Sallet D, Lacoste J, Lemaire J (1986) Photochemistry of aliphatic polyamides. 5. Oxidation of polydodecanamide (PA12) photocatalyzed by TiO2 and ZnO. Makromol Chem-Macromol Chem Phys 187:1819–1832

    Article  Google Scholar 

  • Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells 77:65–82

    Article  Google Scholar 

  • Santato C, Ulmann M, Augustynski J (2001a) Photoelectrochemical properties of nanostructured tungsten trioxide films. J Phys Chem B 105:936–940

    Article  Google Scholar 

  • Santato C, Ulmann M, Augustynski J (2001b) Enhanced visible light conversion efficiency using nanocrystalline WO3 films. Adv Mater 13:511–512

    Article  Google Scholar 

  • Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem Phys Lett 277:387–391

    Article  Google Scholar 

  • Sayama K, Hayashi H, Arai T, Yanagida M, Gunji T, Sugihara H (2010a) Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Appl Catal B 94:150–157

    Article  Google Scholar 

  • Sayama K, Hayashi H, Konishi Y, Gunji T, Sugihara H (2010b) Photocatalytic and antibacterial activities over WO3 on glass filters. Chem Lett 39:884–885

    Article  Google Scholar 

  • Sclafani A, Palmisano L, Schiavello M, Augugliaro V, Coluccia S, Marchese L (1988) The photodecomposition of ethanoic acid adsorbed over semiconductor and insulator oxides. 1. Pure oxides. New J Chem 12:129–135

    Google Scholar 

  • Sclafani A, Palmisano L, Marci G, Venezia AM (1998) Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension. Sol Energy Mater Sol Cells 51:203–219

    Article  Google Scholar 

  • Seabold JA, Choi K-S (2011) Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mater 23:1105–1112

    Article  Google Scholar 

  • Steinbac F (1967) Photocatalysis by semiconductors on metal supports. Photosensitized oxidation of CO with Co3O4, NiO and ZnO on silver supports. Angew Chem Int Ed 6:999–1000

    Google Scholar 

  • Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933

    Article  Google Scholar 

  • Tanaka K, Hisanaga T (1994) Photodegradation of chlorofluorocarbon alternatives on metal-oxide. Sol Energy 52:447–450

    Article  Google Scholar 

  • Tang L, Sallet D, Lemaire J (1982) Photochemistry of polyundecanamides. 2. TiO2-photocatalyzed and ZnO-photocatalyzed oxidation. Macromolecules 15:1437–1441

    Article  Google Scholar 

  • Tatsuma T, Saitoh S, Ohko Y, Fujishima A (2001) TiO2–WO3 photoelectrochemical anticorrosion system with an energy storage ability. Chem Mater 13:2838–2842

    Article  Google Scholar 

  • Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y, Fujishima A (2002) Energy storage of TiO2–WO3 photocatalysis systems in the gas phase. Langmuir 18:7777–7779

    Article  Google Scholar 

  • Tian L, Ye L, Liu J, Zan L (2012) Solvothermal synthesis of CNTs-WO3 hybrid nanostructures with high photocatalytic activity under visible light. Catal Commun 17:99–103

    Article  Google Scholar 

  • Wada K, Yoshida K, Takatani T, Watanabe Y (1993) Selective photooxidation of light alkanes using solid metal-oxide semiconductors. Appl Catal A 99:21–36

    Article  Google Scholar 

  • Wang ZL (2009) Ten years’ venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications. Chin Sci Bull 54:4021–4034

    Article  Google Scholar 

  • Wang TM, Wang HY, Xu P, Zhao XC, Liu YL, Chao S (1998) The effect of properties of semiconductor oxide thin films on photocatalytic decomposition of dyeing waste water. Thin Solid Films 334:103–108

    Article  Google Scholar 

  • Wang HL, Lindgren T, He JJ, Hagfeldt A, Lindquist SE (2000) Photoelectrochemistry of nanostructured WO3 thin film electrodes for water oxidation: Mechanism of electron transport. J Phys Chem B 104:5686–5696

    Article  Google Scholar 

  • Wang HY, Xu P, Wang TM (2002) The preparation and properties study of photocatalytic nanocrystalline/nanoporous WO3 thin films. Mater Des 23:331–336

    Article  Google Scholar 

  • Wang S, Shi X, Shao G, Duan X, Yang H, Wang T (2008) Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites. J Phys Chem Solids 69:2396–2400

    Article  Google Scholar 

  • Wang XJ, Zhang QL, Wan QA, Dai GZ, Zhou CJ, Zou BS (2011) Controllable ZnO Architectures by Ethanolamine-Assisted Hydrothermal Reaction for Enhanced Photocatalytic Activity. J Phys Chem C 115:2769–2775

    Article  Google Scholar 

  • Wang G, Ling Y, Wang H, Yang X, Wang C, Zhang JZ, Li Y (2012) Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci 5:6180–6187

    Article  Google Scholar 

  • Watcharenwong A, Chanmanee W, de Tacconi NR, Chenthamarakshan CR, Kajitvichyanukul P, Rajeshwar K (2008) Anodic growth of nanoporous WO3 films: Morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion. J Electroanal Chem 612:112–120

    Article  Google Scholar 

  • Weinhardt L, Blum M, Baer M, Heske C, Cole B, Marsen B, Miller EL (2008) Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. J Phys Chem C 112:3078–3082

    Article  Google Scholar 

  • Woodward PM, Sleight AW, Vogt T (1995) Structure refinement of triclinic tungsten trioxide. J Phys Chem Solids 56:1305–1315

    Article  Google Scholar 

  • Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    Google Scholar 

  • Xu F, Zhang P, Navrotsky A, Yuan ZY, Ren TZ, Halasa M, Su BL (2007) Hierarchically assembled porous ZnO nanoparticles: Synthesis, surface energy, and photocatalytic activity. Chem Mater 19:5680–5686

    Article  Google Scholar 

  • Yang F, Takahashi Y, Sakai N, Tatsuma T (2011) Visible light driven photocatalysts with oxidative energy storage abilities. J Mater Chem 21:2288–2293

    Article  Google Scholar 

  • Yoshida H, Murata C, Hattori T (1999) Photooxidation of propene to propene oxide by molecular oxygen over zinc oxide dispersed on silica. Chem Lett 9:901–902

    Article  Google Scholar 

  • Yoshida H, Murata C, Hattori T (2000) Screening study of silica-supported catalysts for photoepoxidation of propene by molecular oxygen. J Catal 194:364–372

    Article  Google Scholar 

  • Yu J, Qi L (2009) Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity. J Hazard Mater 169:221–227

    Article  Google Scholar 

  • Zhang LS, Wang WZ, Yang JO, Chen ZG, Zhang WQ, Zhou L, Liu SW (2006) Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst. Appl Catal A 308:105–110

    Article  Google Scholar 

  • Zhang H, Zong RL, Zhu YF (2009a) Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J Phys Chem C 113:4605–4611

    Article  Google Scholar 

  • Zhang LW, Cheng HY, Zong RL, Zhu YF (2009b) Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J Phys Chem C 113:2368–2374

    Article  Google Scholar 

  • Zhang X, Lu X, Shen Y, Han J, Yuan L, Gong L, Xu Z, Bai X, Wei M, Tong Y, Gao Y, Chen J, Zhou J, Wang ZL (2011) Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chem Commun 47:5804–5806

    Article  Google Scholar 

  • Zhao Z-G, Miyauchi M (2008) Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew Chem Int Ed 47:7051–7055

    Article  Google Scholar 

  • Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Nanostrutured tungsten oxide—properties, synthesis, and applications. Adv Func Mater 21:2175–2196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio García-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

García-Rodríguez, S. (2013). Alternative Metal Oxide Photocatalysts. In: Coronado, J., Fresno, F., Hernández-Alonso, M., Portela, R. (eds) Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5061-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5061-9_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5060-2

  • Online ISBN: 978-1-4471-5061-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics