Skip to main content

Functional Morphology of the Heart

  • Chapter
  • First Online:
The Heart and Circulation

Abstract

As mentioned in Chap. 1 , the embryonic heart is a modifi ed blood vessel which in the process of looping transforms from a straight tube to a complex, four-chambered organ. However, unlike in the lower vertebrates, e.g., fi sh and amphibians, where the muscular elements within the myocardial walls are ring shaped [ 1 , 2 ], the threedimensional structure of mammalian hearts is characterized by spiral arrangement of muscle fibers. Resemblance between helical forms and flows in nature and the myocardial structure was already known to the Renaissance anatomists and has been a subject of fascination to researchers ever since. Leonardo da Vinci believed that the heart is a “vessel made of dense muscle” and proposed that closure of the aortic valves results from vortical flow in the sinuses of Valsalva [ 3 ]. Leonardo may have been the first to describe the difference between the rotational and irrotational vortex, a key concept of circulation in hydrodynamics [ 4 ]. 1 Richard Lower published the first detailed drawings of the separate myocardial muscular layers–overlapping much like rings of an onion – and drew attention to the fact that the endocardium and epicardium meet directly at the apex which is free of muscular elements [ 5 ]. In 1728, Senac demonstrated that the myocardial fibers are organized in spiral, three-dimensional arrangement, a fi nding repeatedly confi rmed by investigators over the next 200 years. (For review, see [ 6–8 ].)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Leonardo correctly observed that the velocity of movement in swirling water draining from a tub, or hitting a stationary object, is faster towards the axis of rotation, where the product of tangential velocity and radius is invariant (constant). An object caught in such a “free” or irrotational vortex, e.g., a seed of grass, always points in the same direction as it circles around the center. Irrotational vortices occur in the sinuses of Valsalva, as observed by Leonardo, and also in the ventricles [4]. When, on the other hand, the fluid is impelled into movement by spinning its container, a vortex is formed in which the tangential velocity is proportional to its distance from the center of rotation. In addition to rotating around the center of the container, the seed of grass floating on the surface of such a vortex will also spin around its own axis; hence, the vortex is said to be rotational.

  2. 2.

    See Markl et al. [40] for time-resolved three-dimensional MRI video of intracardiac flow paths (Ref. [38]).

  3. 3.

    In a novel technique of minimally invasive (i.e., without resorting to open-heart surgery and cardiopulmonary bypass) aortic valve replacement know as TAVI (transcatheter aortic valve implantation), the aortic valve is deployed into the aortic root through the heart’s apex, without apparent disruption of left ventricular integrity.

References

  1. Pettigrew JB. On the arrangement of the muscular fibres in the ventricles of the vertebrate heart, with physiological remarks. Philos Trans R Soc Lond. 1864;154:445–500.

    Article  Google Scholar 

  2. Benninghoff A. Die Architektur des Herzmuskels. Eine vergleichend anatomische und vergleichend funktionelle Betrachtung. Morph Jarhb. 1931;67:262–317.

    Google Scholar 

  3. McMurrich JP, Washington CIo. Leonardo da Vinci, the anatomist (1452–1519). Vol. 411. Baltimore: Pub. for Carnegie institution of Washington by the Williams & Wilkins Company; 1930.

    Google Scholar 

  4. Pasipoularides A. Heart’s vortex: intracardiac blood flow phenomena. Shelton: People’s Medical Publishing House-USA; 2010. p. 119–27.

    Google Scholar 

  5. Lower R. Tractatus de Corde (trans: Franklin KJ). Oxford: Early Science; 1932.

    Google Scholar 

  6. Torrent-Guasp F, et al. Systolic ventricular filling. Eur J Cardiothorac Surg. 2004;25(3):376–86.

    Article  PubMed  Google Scholar 

  7. Buckberg GD. Basic science review: the helix and the heart. J Thorac Cardiovasc Surg. 2002;124(5):863.

    Article  PubMed  Google Scholar 

  8. Greenbaum R, et al. Left ventricular fibre architecture in man. Br Heart J. 1981;45(3):248–63.

    Article  PubMed  CAS  Google Scholar 

  9. Pettigrew JB. Design in nature, vol. 2. London/New York: Longmans, Green and Co; 1908.

    Google Scholar 

  10. Pettigrew JB. Anatomical preparation making as devised and practised at the university of Edinburgh and at the Hunterian Museum of the Royal College of Surgeons of England. Lancet. 1901;158(4083):1479–84.

    Article  Google Scholar 

  11. Pasipoularides A. Heart’s vortex: intracardiac blood flow phenomena. Shelton: People’s Medical Publishing House-USA; 2010. p. 301–2.

    Google Scholar 

  12. Benninghoff A, Goerttler K. Lehrbuch der Anatomie des Menschen, vol. II. Munich: Urban & Schwarzenber; 1980.

    Google Scholar 

  13. Rushmer R. Cardiovascular dynamics. 2nd ed. Philadelphia/London: WB Saunders Co; 1961. p. 35.

    Google Scholar 

  14. Brecher G, Galletti P. Functional anatomy of cardiac pumping. In: Hamilton WF, Dow P, editors. Handbook of physiology: circulation. Washington, D.C.: American Physiological Society; 1963. p. 759–98.

    Google Scholar 

  15. Ludwig C. Ueber den Bau und die Bewegungen der Herzventrikel. Z Rationelle Med. 1849;7:189–220.

    Google Scholar 

  16. Krehl Lv. Beitraege zur Kenntniss der Fuellung und Entleerung des Herzens. Abhandlungen der Mathematisch-Physischen Classe der Koenigl.-Saechs. Gesellschaft der Wissenschaften. 1881;17:340–83.

    Google Scholar 

  17. MacCallum JB. On the muscular architecture and growth of the ventricles of the heart. Johns Hopkins Hosp Rep. 1900;9:307–35.

    Google Scholar 

  18. Mall FP. On the muscular architecture of the ventricles of the human heart. Am J Anat. 1911;11(3):211–66.

    Article  Google Scholar 

  19. Frank O. On the dynamics of cardiac muscle (Translated By Chapman CB and Wasserman E). Am Heart J. 1959;58(2):282–317.

    Article  Google Scholar 

  20. Starling EH. The Linacre lecture on the law of the heart. London: Longmans, Green & Co; 1918.

    Google Scholar 

  21. Patterson S, Piper H, Starling E. The regulation of the heart beat. J Physiol. 1914;48(6):465.

    PubMed  CAS  Google Scholar 

  22. Katz AM. Ernest Henry Starling, his predecessors, and the Law of the Heart. Circulation. 2002;106(23):2986–92.

    Article  PubMed  Google Scholar 

  23. Mommaerts WFM. Heart muscle. In: Fishman AP, Richards DW, editors. Circulation of the blood: men and ideas. Bethesda: American Physiological Society; 1982. p. 127–98.

    Google Scholar 

  24. Kocica MJ, et al. The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium. Eur J Cardiothorac Surg. 2006;29 Suppl 1:S21–40.

    Article  PubMed  Google Scholar 

  25. Pasipoularides A. Heart’s vortex: intracardiac blood flow phenomena. Shelton: People’s Medical Publishing House-USA; 2010. p. 311–7.

    Google Scholar 

  26. Brecher GA. Venous return. New York: Grune & Stratton; 1956.

    Google Scholar 

  27. Brecher GA. Critical review of recent work on ventricular diastolic suction. Circ Res. 1958;6(5):554–66.

    Article  PubMed  CAS  Google Scholar 

  28. Smerup M, et al. The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. Anat Rec. 2009;292(1):1–11.

    Article  Google Scholar 

  29. Anderson RH, et al. The anatomical arrangement of the myocardial cells making up the ventricular mass. Eur J Cardiothorac Surg. 2005;28(4):517–25.

    Article  PubMed  Google Scholar 

  30. Anderson RH, et al. How are the myocytes aggregated so as to make up the ventricular mass? Seminars in thoracic and cardiovascular surgery: Pediatric cardiac surgery annual. 2007;10(1):76–86.

    Google Scholar 

  31. Lev M, Simkins C. Architecture of the human ventricular myocardium; technic for study using a modification of the Mall-MacCallum method. Lab Invest. 1956;5(5):396–409.

    PubMed  CAS  Google Scholar 

  32. Grant RP. Notes on the muscular architecture of the left ventricle. Circulation. 1965;32(2):301–8.

    Article  PubMed  CAS  Google Scholar 

  33. Streeter Jr DD, Bassett DL. An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. Anat Rec. 1966;155(4):503–11.

    Article  Google Scholar 

  34. Streeter Jr DD, et al. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969;24(3):339–47.

    Article  PubMed  Google Scholar 

  35. Hunter P, Smaill B. The analysis of cardiac function: a continuum approach. Prog Biophys Mol Biol. 1988;52(2):101.

    Article  PubMed  CAS  Google Scholar 

  36. Sengupta PP, et al. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr. 2007;20(5):539–51.

    Article  PubMed  Google Scholar 

  37. Kilner PJ, et al. Asymmetric redirection of flow through the heart. Nature. 2000;404:759–61.

    Article  PubMed  CAS  Google Scholar 

  38. Fyrenius A, et al. Three dimensional flow in the human left atrium. Heart. 2001;86(4):448.

    Article  PubMed  CAS  Google Scholar 

  39. Domenichini F, et al. Combined experimental and numerical analysis of the flow structure into the left ventricle. J Biomech. 2007;40(9):1988–94.

    Article  PubMed  CAS  Google Scholar 

  40. Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13(1):1–22.

    Article  Google Scholar 

  41. Gharib M, et al. Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci. 2006;103(16):6305–8.

    Article  PubMed  CAS  Google Scholar 

  42. Hong GR, et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc Imaging. 2008;1(6):705–17.

    Article  PubMed  Google Scholar 

  43. Pasipoularides A. Heart’s vortex: intracardiac blood flow phenomena. Shelton: People’s Medical Publishing House-USA; 2010. p. 735–807.

    Google Scholar 

  44. Sengupta PP, et al. Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of high-resolution Doppler and ultrasonic digital particle imaging velocimetry. J Am Coll Cardiol. 2007;49(8):899–908.

    Article  PubMed  Google Scholar 

  45. Pasipoularides A, et al. Diastolic right ventricular filling vortex in normal and volume overload states. Am J Physiol Heart Circ Physiol. 2003;284(4):H1064–72.

    PubMed  CAS  Google Scholar 

  46. Taylor T, Yamaguchi T. Flow patterns in three-dimensional left ventricular systolic and diastolic flows determined from computational fluid dynamics. Biorheology. 1995;32(1):61.

    PubMed  CAS  Google Scholar 

  47. Sengupta PP, et al. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging. 2008;1(3):366–76.

    Article  PubMed  Google Scholar 

  48. Maire R, et al. Abnormalities of left ventricular flow following mitral valve replacement: a colour flow Doppler study. Eur Heart J. 1994;15(3):293–302.

    PubMed  CAS  Google Scholar 

  49. Pasipoularides A, et al. RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. Am J Physiol Heart Circ Physiol. 2003;285(5):H1956–65.

    PubMed  CAS  Google Scholar 

  50. Watanabe H, Sugiura S, Hisada T. The looped heart does not save energy by maintaining the momentum of blood flowing in the ventricle. Am J Physiol Heart Circ Physiol. 2008;294(5):H2191–6.

    Article  PubMed  CAS  Google Scholar 

  51. Pasipoularides A. Heart’s vortex: intracardiac blood flow phenomena. Shelton: People’s Medical Publishing House-USA; 2010. p. 791.

    Google Scholar 

  52. Kilner P, et al. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993;88(5):2235–47.

    Article  PubMed  CAS  Google Scholar 

  53. Marinelli R, et al. Rotary motion in the heart and blood vessels: a review. J Appl Cardiol. 1991;6(6):421–31.

    Google Scholar 

  54. Motomiya M, Karino T. Flow patterns in the human carotid artery bifurcation. Stroke. 1984;15(1):50–6.

    Article  PubMed  CAS  Google Scholar 

  55. Karino T, et al. Flow patterns in vessels of simple and complex geometriesa. Ann N Y Acad Sci. 1987;516(1):422–41.

    Article  PubMed  CAS  Google Scholar 

  56. Katz AM. Physiology of the heart. New York: Raven Press; 1992. p. 196–218.

    Google Scholar 

  57. Hansford RG, Lakatta EG. Ryanodine releases calcium from sarcoplasmic reticulum in calcium-tolerant rat cardiac myocytes. J Physiol. 1987;390(1):453–67.

    PubMed  CAS  Google Scholar 

  58. Granzier HL, Labeit S. The giant protein titin. Circ Res. 2004;94(3):284–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Furst, B. (2014). Functional Morphology of the Heart. In: The Heart and Circulation. Springer, London. https://doi.org/10.1007/978-1-4471-5277-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5277-4_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5276-7

  • Online ISBN: 978-1-4471-5277-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics