Skip to main content

Time-Scale Splitting-Based Mechanism Reduction

  • Chapter
  • First Online:
Cleaner Combustion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Chemical reaction systems, including those in combustion, often exhibit a large range of time-scales which can lead to stiffness in the resulting rate equations. This feature can however be exploited in the context of model reduction by recognising that certain fast species can relax to a quasi-equilibrium state or, in geometrical terms, that the evolution of the system of equations in composition space relaxes to lower and lower dimensional attractors. Time-scale separation therefore forms a basis for model reduction. This chapter introduces model reduction techniques based on time-scale splitting which may differ in their approach, but which all utilise the fact that chemical kinetic systems evolve with time-scales that often differ by orders of magnitude. The chapter will first discuss the mathematical basis on which time-scale separation is defined. It will then discuss approaches for model reduction based on algebraic approximations such as the quasi-steady state approximation or QSSA, trajectory-based approaches such as computational singular perturbation methods, geometrical approaches based on the presence of intrinsic low dimensional manifolds in composition space and methods based on thermodynamic principles such as the rate-controlled constrained-equilibrium method. Methods will be introduced for homogeneous reaction systems. The extension to reaction diffusion systems will then be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauer J, Bykov V, Maas U (2006). Implementation of ILDMs based on a representation in generaliCombust Flamezed coordinates. In: Wesseling P, Onate E, Periaux JLB (eds) European conference on computational fluid dynamics, ECCOMAS CFD, Egmond aan Zee, The Netherlands, 5–8 Sept 2006

    Google Scholar 

  • Bender R, Blasenbrey T, Maas U (2000) Coupling of detailed and ILDM-reduced chemistry with turbulent mixing. Proc Combust Inst 28:101–106

    Article  Google Scholar 

  • Blasenbrey T, Maas U (2000) ILDMs of higher hydrocarbons and the hierarchy of chemical kinetics. Proc Combust Inst 28:1623–1630

    Article  Google Scholar 

  • Bodenstein M (1913) Zur Kinetik des Chlorknallgases. Z Phys Chem 85:329

    Google Scholar 

  • Bykov V, Gol’dshtein V (2008) On a decomposition of motions and model reduction. J Phys Conf Ser 138(1):012003

    Article  Google Scholar 

  • Bykov V, Gol’dshtein V, Bykov UML (2007). Global Quasi Linearization (GQL) for the automatic reduction of chemical kinetics. In: Proceedings of the European combustion meeting, Chania, Crete (Greece)

    Google Scholar 

  • Bykov V, Gol’dshtein V, Maas U (2008) Simple global reduction technique based on decomposition approach. Combust Theor Model 12(2):389–405

    Article  MathSciNet  MATH  Google Scholar 

  • Bykov V, Goldfarb I, Gol’dshtein I (2005) Novel numerical decomposition approaches for multiscale combustion and kinetic models. J Phys Conf Ser 22(1):1–29

    Article  Google Scholar 

  • Bykov V, Goldfarb I, Gol’dshtein V et al (2006) On a modified version of ILDM approach: asymptotic analysis based on integral manifolds. Ima J Appl Maths 71:359–382

    Article  MathSciNet  MATH  Google Scholar 

  • Bykov V, Maas U (2007a) Extension of the ILDM method to the domain of slow chemistry. Proc Combust Inst 31:465–472

    Article  Google Scholar 

  • Bykov V, Maas U (2007b) The extension of the ILDM concept to reaction-diffusion manifolds. Combust Theor Model 11(6):839–862

    Article  MATH  Google Scholar 

  • Bykov V, Maas U (2009) Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs). Proc Combust Inst 32:561–568

    Article  Google Scholar 

  • Chen JY (1988) A general procedure for constructing reduced reaction-mechanisms with given independent relations. Combust Sci Technol 57(1–3):89–94

    Article  Google Scholar 

  • Chen JY, Tham YF (2008) Speedy solution of quasi-steady-state species by combination of fixed-point iteration and matrix inversion. Combust Flame 153:634–646

    Article  Google Scholar 

  • Chiavazzo E, Gorban AN, Karlin IV (2007) Comparison of invariant manifolds for model reduction in chemical kinetics. Commun Comput Phys 2:964–992

    MathSciNet  Google Scholar 

  • Davis J, Skodje RT (1999) Geometric investigation of low-dimensional manifolds in systems approaching equilibrium. J Chem Phys 111:859–874

    Article  Google Scholar 

  • Davis MJ (2006a) Low-dimensional manifolds in reaction-diffusion equations. 1. Fundamental aspects. J Phys Chem A 110(16):5235–5256

    Article  Google Scholar 

  • Davis MJ (2006b) Low-dimensional manifolds in reaction-diffusion equations. 2. Numerical analysis and method development. J Phys Chem A 110(16):5257–5272

    Article  Google Scholar 

  • Davis MJ, Tomlin AS (2008a) Spatial dynamics of steady flames 1. Phase space structure and the dynamics of individual trajectories. J Phys Chem A 112:7768–7783

    Article  Google Scholar 

  • Davis MJ, Tomlin AS (2008b) Spatial dynamics of steady flames 2. Low-dimensional manifolds and the role of transport processes. J Phys Chem A 112:7784–7805

    Article  Google Scholar 

  • Deuflhard P, Heroth J, Maas U (1996) Towards dynamic dimension reduction in reactive flow problems. Modelling of chemical reaction systems. In: Warnatz J, Behrendt FLD (eds) Proceedings of an international workshop, Heidelberg, Germany, 24–26 July 1996

    Google Scholar 

  • Frank-Kamenetskii DA (1940) Уcлoвия пpимeнинocти мeтoдa Бoдeнштeйнa в xимичecкoй кинeтикe. Ж Физ Xим 14:695–700

    Google Scholar 

  • García-Ybarra PL, Treviño C (1994) Asymptotic analysis of the boundary layer H2 ignition by a hot flat plate with thermal diffusion. Combust Flame 96:293–303

    Article  Google Scholar 

  • Gear CW, Kaper TJ, Kevrekidis IG et al (2005) Projecting to a slow manifold: singularly perturbed systems and legacy codes. SIAM J Appl Dyn Syst 4:711–732

    Article  MathSciNet  MATH  Google Scholar 

  • Gicquel O, Darabiha N, Thévenin D (2000) Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc Combust Inst 28:1901–1908

    Article  Google Scholar 

  • Gorban A, Karlin IV (2005) Invariant manifolds for physical and chemical kinetics. Springer, Berlin

    MATH  Google Scholar 

  • Gorban AN, Karlin IV (2003) Method of invariant manifold for chemical kinetics. Chem Eng Sci 58:4751–4768

    Article  Google Scholar 

  • Gorban AN, Karlin IV, Zinovyev AY (2004) Constructive methods of invariant manifolds for kinetic problems. Phys Rep 396:197–403

    Article  MathSciNet  Google Scholar 

  • Goussis DA, Skevis G (2005) Nitrogen chemistry controlling steps in methane-air premixed flames. In: Bathe KJ (ed) Computational fluid and solid mechanics. Amsterdam: Elsevier, pp 650–653

    Google Scholar 

  • Goussis DA, Valorani M (2006) An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems. J Comput Phys 214:316–346

    Article  MathSciNet  MATH  Google Scholar 

  • Goussis DA, Valorani M, Creta F et al (2005) Reactive and reactive-diffusive time-scales in stiff reaction-diffusion systems. Prog Comput Fluid Dyn 5(6):316–326

    Article  MathSciNet  MATH  Google Scholar 

  • Hadjinicolaou M, Goussis DA (1998) Asymptotic solution of stiff PDEs with the CSP method: the reaction diffusion equation. SIAM J Sci Comput 20:781–810

    Article  MathSciNet  Google Scholar 

  • Hughes KJ, Fairweather M, Griffiths JF et al (2009) The application of the QSSA via reaction lumping for the reduction of complex hydrocarbon oxidation mechanisms. Proc Combust Inst 32:543–551

    Article  Google Scholar 

  • Jones WP, Rigopoulos S (2005a) Rate-controlled constrained equilibrium: formulation and application to nonpremixed laminar flames. Combust Flame 142:223–234

    Article  Google Scholar 

  • Jones WP, Rigopoulos S (2005b) Reduction of comprehensive chemistry via constraint potentials. Proc Combust Inst 30:1325–1331

    Article  Google Scholar 

  • Jones WP, Rigopoulos S (2007) Reduced chemistry for hydrogen and methanol premixed flames via RCCE. Combust Theor Model 11(5):755–780

    Article  MATH  Google Scholar 

  • Kaper HG, Kaper TJ (2002) Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D 165:66–93

    Article  MathSciNet  MATH  Google Scholar 

  • Keck JC, Gillespie D (1971) Rate-controlled partial-equilibrium method for treating reacting gas-mixtures. Combust Flame 17:237–248

    Article  Google Scholar 

  • König K, Maas U (2009) On-demand generation of reduced mechanisms based on hierarchically extended intrinsic low-dimensional manifolds in generalized coordinates. Proc Combust Inst 32:553–560

    Article  Google Scholar 

  • Konzen PHD, Richter T, Riedel U et al (2011) Implementation of REDIM reduced chemistry to model an axisymmetric laminar diffusion methane-air flame. Combust Theor Model 15(3):299–323

    Article  MATH  Google Scholar 

  • Lam SH (1993) Using CSP to understand complex chemical kinetics. Combust Sci Technol 89:375–404

    Article  Google Scholar 

  • Lam SH, Goussis DA (1988) Understanding complex chemical kinetics with computational singular perturbation. Proc Combust Inst 22:931–941

    Google Scholar 

  • Lam SH, Goussis DA (1991) Conventional asymptotics and computational singular perturbation for simplified kinetics modeling. In: Smooke MO (ed) Reduced kinetic mechanisms and asymptotic approximations for methane-air flames, vol 384. Springer, Berlin, pp 227–242

    Google Scholar 

  • Lam SH, Goussis DA (1994) The CSP method for simplifying kinetics. Int J Chem Kinet 26:461–486

    Article  Google Scholar 

  • Lebiedz D (2004) Computing minimal entropy production trajectories: an approach to model reduction in chemical kinetics. J Chem Phys 120:6890–6897

    Article  Google Scholar 

  • Lee JC, Najm HN, Lefantzi S et al (2007) A CSP and tabulation-based adaptive chemistry model. Combust Theory Model 11(1):73–102

    Article  MATH  Google Scholar 

  • Libby PA, Bray KNC (1980) Implications of the laminar flamelet model in premixed turbulent combustion. Combust Flame 39(1):33–41

    Article  Google Scholar 

  • Liew SK, Bray KNC, Moss JB (1981) A flamelet model of turbulent non-premixed combustion. Combust Sci Technol 27(1–2):69–73

    Article  Google Scholar 

  • Løvås T (2009) Automatic generation of skeletal mechanisms for ignition combustion based on level of importance analysis. Combust Flame 156:1348–1358

    Article  Google Scholar 

  • Løvås T, Amneus P, Mauss F et al (2002a) Comparison of automatic reduction procedures for ignition chemistry. Proc Comb Inst 29:1387–1393

    Article  Google Scholar 

  • Løvås T, Hasse K, Mauss F et al (2002b) Development of adaptive kinetics for application in combustion systems. Proc Comb Inst 29:1403–1410

    Article  Google Scholar 

  • Lovas T, Navarro-Martinez S, Rigopoulos S (2011) On adaptively reduced chemistry in large eddy simulations. Proc Combust Inst 33:1339–1346

    Article  Google Scholar 

  • Løvås T, Nilsson D, Mauss F (2000) Automatic reduction procedure for chemical mechanisms applied to premixed methane/air flames. Proc Combust Inst 28:1809–1815

    Article  Google Scholar 

  • Maas U (1998) Efficient calculation of intrinsic low-dimensional manifolds for the simplification of chemical kinetics. Comput Vis Sci 1:69–81

    Article  MATH  Google Scholar 

  • Maas U, Bykov V (2011) The extension of the reaction/diffusion manifold concept to systems with detailed transport models. Proc Combust Inst 33:1253–1259

    Article  Google Scholar 

  • Maas U, Pope SB (1992a) Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust Flame 88:239–264

    Article  Google Scholar 

  • Maas U, Pope SB (1992b) Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc Combust Inst 24:103–112

    Google Scholar 

  • Maas U, Pope SB (1994) Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc Combust Inst 25:1349–1356

    Google Scholar 

  • Maly T, Petzold LR (1996) Numerical methods and software for sensitivity analysis of differential-algebraic systems. Appl Num Maths 20(1–2):57–79

    Article  MathSciNet  MATH  Google Scholar 

  • Maplesoft (2012) MAPLE, http://www.maplesoft.com

  • Massias A, Diamantis D, Mastorakos E et al (1999) An algorithm for the construction of global reduced mechanisms with CSP data. Combust Flame 117:685–708

    Article  Google Scholar 

  • Nafe J, Maas U (2002a) A general algorithm for improving ILDMs. Combust Theor Model 6:697–709

    Article  Google Scholar 

  • Nafe J, Maas U (2002b) Modeling of NO formation based on ILDM reduced chemistry. Proc Combust Inst 29:1379–1385

    Article  Google Scholar 

  • Nafe J, Maas U (2003) Hierarchical generation of ILDMs of higher hydrocarbons. Combust Flame 135:17–26

    Article  Google Scholar 

  • Najm HN, Valorani M, Goussis DA et al (2010) Analysis of methane-air edge flame structure. Combust Theor Model 14:257–294

    Article  MATH  Google Scholar 

  • Nguyen PD, Vervisch L, Subramanian V et al (2010) Multidimensional flamelet-generated manifolds for partially premixed combustion. Combust Flame 157:43–61

    Article  Google Scholar 

  • Oijen JAV, Goey LPHD (2000) Modelling of premixed laminar flames using flamelet-generated manifolds. Combust Sci Technol 161:113

    Article  Google Scholar 

  • Peters N, Rogg B (eds) (1993) Reduced kinetic mechanisms for applications in combustion systems. Springer, Berlin

    Google Scholar 

  • Peters N, Williams FA (1987) The asymptotic structure of stoichiometric methane air flames. Combust Flame 68(2):185–207

    Article  Google Scholar 

  • Prager J, Najm HN, Valorani M et al (2009) Skeletal mechanism generation with CSP and validation for premixed n-heptane flames. Proc Combust Inst 32:509–517

    Article  Google Scholar 

  • Ren Z, Pope SB (2005) Species reconstruction using pre-image curves. Proc Combust Inst 30:1293–1300

    Article  Google Scholar 

  • Ren Z, Pope SB (2007) Transport-chemistry coupling in the reduced description of reactive flows. Combust Theor Model 11:715–739

    Article  MathSciNet  MATH  Google Scholar 

  • Rhodes C, Morari M, Wiggins S (1999) Identification os low order manifolds: validating the algorithm of maas and pope. Chaos 9(1):108–123

    Article  MathSciNet  MATH  Google Scholar 

  • Rigopoulos S, Lovas T (2009) A LOI-RCCE methodology for reducing chemical kinetics, with application to laminar premixed flames. Proc Combust Inst 32:569–576

    Article  Google Scholar 

  • Roussel MR, Fraser SJ (1991) On the geometry of transient relaxation. J Chem Phys 94(11):7106–7113

    Article  Google Scholar 

  • Skodje RT, Davis MJ (2001) Geometrical simplification of complex kinetic systems. J Phys Chem A 105:10356–10365

    Article  Google Scholar 

  • Tomlin AS, Pilling MJ, Turányi T et al (1992) Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyses. Combust Flame 91:107–130

    Article  Google Scholar 

  • Treviño C (1991) Ignition phenomena in H2/O2 mixtures. Prog Astronaut Aeronaut 131:19–43

    Google Scholar 

  • Treviño C, Liñan A (1994) Numerical and asymptotic analysis of ignition processes. In: Buckmaster J, Jackson TL, Kumar A (eds) Combustion in high-speed flows. Kluwer Academic Publishers, Dordrecht, pp 477–490

    Google Scholar 

  • Treviño C, Mendez F (1991) Asymptotic analysis of the ignition of hydrogen by a hot plate in a boundary layer flow. Combust Sci Technol 78:197–216

    Article  Google Scholar 

  • Treviño C, Mendez F (1992) Reduced kinetic mechanism for methane ignition. Proc Combust Inst 24:121–127

    Google Scholar 

  • Treviño C, Solorio F (1991) Asymptotic analysis of high temperature ignition of CO/H2/O2 mixtures. Combust Flame 86:285–295

    Article  Google Scholar 

  • Turányi T, Tomlin AS, Pilling MJ (1993) On the error of the quasi-steady-state approximation. J Phys Chem 97:163–172

    Article  Google Scholar 

  • Turányi T, Tóth J (1992) Comments to an article of Frank-Kamenetskii on the quasi-steady-state approximation. Acta Chim Hung 129(6):903–907 Models in chemistry

    Google Scholar 

  • Valorani M, Creta F, Donato F et al (2007) Skeletal mechanism generation and analysis for n-heptane with CSP. Proc Combust Inst 31:483–490

    Google Scholar 

  • Valorani M, Creta F, Goussis D et al (2006) An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP. Combust Flame 146:29–51

    Article  Google Scholar 

  • Valorani M, Goussis DA (2001) Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock. J Comput Phys 169:44–79

    Article  MathSciNet  MATH  Google Scholar 

  • Valorani M, Goussis DA, Creta F et al (2005) Higher order corrections in the approximation of low dimensional manifolds and the construction of simplified problems with the CSP method. JComput Phys 209:754–786

    Article  MathSciNet  MATH  Google Scholar 

  • Valorani M, Najm HN, Goussis DA (2003) CSP analysis of a transient flame-vortex interaction: time-scales and manifolds. Combust Flame 134:35–53

    Article  Google Scholar 

  • Yan X, Maas U (2000) Intrinsic low-dimensional manifolds of heterogeneous combustion processes. Proc Combust Inst 28:1615–1621

    Article  Google Scholar 

Download references

Acknowledgments

UM thanks DFG for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Maas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Maas, U., Tomlin, A.S. (2013). Time-Scale Splitting-Based Mechanism Reduction. In: Battin-Leclerc, F., Simmie, J., Blurock, E. (eds) Cleaner Combustion. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5307-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5307-8_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5306-1

  • Online ISBN: 978-1-4471-5307-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics