Skip to main content

General Introduction

  • Chapter
  • First Online:
Developing Insights in Cartilage Repair

Abstract

Hyaline cartilage enables us to move our joints even when exposed to high mechanical forces. Other types of cartilage can be found in tissues like the ear, nose, airway etc. In contrast to many other tissues only one type of cell is found in hyaline cartilage this cell is the chondrocyte. Since chondrocytes are capable to produce their own matrix, it is possible to generate cartilage in a laboratory setting. This approach applies to the ideas of tissue engineering. However aspects such as tissue architecture, integration to host tissue, and costs remain of concern when trying to repair and/or produce adequate hyaline cartilage capable to withstand high repetitive mechanical forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res. 2001;(391 Suppl):S26–33.

    Google Scholar 

  2. Buckwalter J, Mankin H. Articular cartilage: tissue design and chondrocyte matrix interactions. Instr Course Lect. 1998;47:487–504.

    PubMed  CAS  Google Scholar 

  3. Hasler EM, Herzog W, Wu JZ, Muller W, Wyss U. Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response. Crit Rev Biomed Eng. 1999;27(6):415–88.

    PubMed  CAS  Google Scholar 

  4. Urist M. Biogenesis of bone: calcium and phophorus in the skeleton and blood in vertebrate evolution. In: Greep R, Astwood E, editors. Handbook of physiology. Washington, DC: American Physiological Society; 1976. p. 183–213.

    Google Scholar 

  5. Aydelotte M, Kuettner K. Heterogeneity of articular chondrocytes and cartilage matrix. In: Woessner J, Howell DS, editors. Cartilage degradation: basic and clinical aspects. New York: Marcel Dekker; 1992. p. 37–65.

    Google Scholar 

  6. Anderson H. Histochemical studies of the human hip joint. Acta Anat. 1962;48:258–92.

    Article  Google Scholar 

  7. Gray DJ, Gardner E. Prenatal development of the human knee and superior tibiofibular joints. Am J Anat. 1950;86(2):235–87.

    Article  PubMed  CAS  Google Scholar 

  8. Schenk R, Eggli P, Hunziker E. Articular cartilage morphology. In: Kuettner K, Schleyerbach R, Hascall V, editors. Articular cartilage biochemistry. New York: Raven Press; 1986. p. 3–22.

    Google Scholar 

  9. Aydelotte MB, Greenhill RR, Kuettner KE. Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res. 1988;18(3):223–34.

    Article  PubMed  CAS  Google Scholar 

  10. Noonan KJ, Stevens JW, Tammi R, Tammi M, Hernandez JA, Midura RJ. Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. J Orthop Res. 1996;14(4):573–81.

    Article  PubMed  CAS  Google Scholar 

  11. Lisignoli G, Grassi F, Zini N, Toneguzzi S, Piacentini A, Guidolin D, et al. Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) invovement. Arthritis Rheum. 2001;44(8):1800–7.

    Article  PubMed  CAS  Google Scholar 

  12. Fujita Y, Kitagawa M, Nakamura S, Azuma K, Ishii G, Higashi M, et al. CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett. 2002;528(1–3):101–8.

    Article  PubMed  CAS  Google Scholar 

  13. Ryan MC, Sandell LJ. Differential expression of a cysteine-rich domain in the amino-terminal propeptide of type II (cartilage) procollagen by alternative splicing of mRNA. J Biol Chem. 1990;265(18):10334–9.

    PubMed  CAS  Google Scholar 

  14. Chang J, Nakajima H, Poole CA. Structural colocalisation of type VI collagen and fibronectin in agarose cultured chondrocytes and isolated chondrons extracted from adult canine tibial cartilage. J Anat. 1997;190(Pt 4):523–32.

    Article  PubMed  CAS  Google Scholar 

  15. Hambach L, Neureiter D, Zeiler G, Kirchner T, Aigner T. Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage. Arthritis Rheum. 1998;41(6):986–96.

    Article  PubMed  CAS  Google Scholar 

  16. Poole CA, Ayad S, Schofield JR. Chondrons from articular cartilage: I. Immunolocalization of type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J Cell Sci. 1988;90(Pt 4):635–43.

    PubMed  Google Scholar 

  17. Poole CA, Flint MH, Beaumont BW. Chondrons extracted from canine tibial cartilage: preliminary report on their isolation and structure. J Orthop Res. 1988;6(3):408–19.

    Article  PubMed  CAS  Google Scholar 

  18. Poole CA, Ayad S, Gilbert RT. Chondrons from articular cartilage. V. Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy. J Cell Sci. 1992;103(Pt 4):1101–10.

    PubMed  CAS  Google Scholar 

  19. Guilak F, Jones WR, Ting-Beall HP, Lee GM. The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Osteoarthritis Cartilage. 1999;7(1):59–70.

    Article  PubMed  CAS  Google Scholar 

  20. Knight MM, Ross JM, Sherwin AF, Lee DA, Bader DL, Poole CA. Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose. Biochim Biophys Acta. 2001;1526(2):141–6.

    Article  PubMed  CAS  Google Scholar 

  21. Poole CA, Flint MH, Beaumont BW. Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J Orthop Res. 1987;5(4):509–22.

    Article  PubMed  CAS  Google Scholar 

  22. Eyre DR, Apon S, Wu JJ, Ericsson LH, Walsh KA. Collagen type IX: evidence for covalent linkages to type II collagen in cartilage. FEBS Lett. 1987;220(2):337–41.

    Article  PubMed  CAS  Google Scholar 

  23. van der Rest M, Mayne R. Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem. 1988;263(4):1615–8.

    PubMed  Google Scholar 

  24. Wu JJ, Eyre DR. Covalent interactions of type IX collagen in cartilage. Connect Tissue Res. 1989;20(1–4):241–6.

    Article  PubMed  CAS  Google Scholar 

  25. Muller-Glauser W, Humbel B, Glatt M, Strauli P, Winterhalter KH, Bruckner P. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils. J Cell Biol. 1986;102(5):1931–9.

    Article  PubMed  CAS  Google Scholar 

  26. Mankin H, Mow V, Buckwalter J. Articular cartilage structure, composition, and function. In: Buckwalter J, Einhorn T, Simon S, editors. Orthopaedic basic science. Rosemont: AAOS; 2000. p. 443–70.

    Google Scholar 

  27. Eyre D, Wu J, Woods P, et al. The cartilage-specific collagens: structural studies. In: Kuettner K, editor. Articular cartilage and osteoarthritis. New York: Raven Press; 1992. p. 119–31.

    Google Scholar 

  28. Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000;275(50):39027–31.

    Article  PubMed  CAS  Google Scholar 

  29. Maroudas A, Uchitel N, Babyliss M, Gilav E. Racemization of aspartic acid in proteoglycans from human articular cartilage. Trans Orthop Res Soc. 1994;19:13.

    Google Scholar 

  30. Mok SS, Masuda K, Hauselmann HJ, Aydelotte MB, Thonar EJ. Aggrecan synthesized by mature bovine chondrocytes suspended in alginate. Identification of two distinct metabolic matrix pools. J Biol Chem. 1994;269(52):33021–7.

    PubMed  CAS  Google Scholar 

  31. Hauselmann HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB, et al. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci. 1994;107(Pt 1):17–27.

    PubMed  Google Scholar 

  32. O’Driscoll SW. The healing and regeneration of articular cartilage. J Bone Joint Surg Am. 1998;80(12):1795–812.

    PubMed  Google Scholar 

  33. Aglietti P, Buzzi R, Bassi PB, Fioriti M. Arthroscopic drilling in juvenile osteochondritis dissecans of the medial femoral condyle. Arthroscopy. 1994;10(3):286–91.

    Article  PubMed  CAS  Google Scholar 

  34. Altman RD, Kates J, Chun LE, Dean DD, Eyre D. Preliminary observations of chondral abrasion in a canine model. Ann Rheum Dis. 1992;51(9):1056–62.

    Article  PubMed  CAS  Google Scholar 

  35. Bradley J, Dandy DJ. Results of drilling osteochondritis dissecans before skeletal maturity. J Bone Joint Surg Br. 1989;71(4):642–4.

    PubMed  CAS  Google Scholar 

  36. Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am. 1980;62(1):79–89.

    PubMed  CAS  Google Scholar 

  37. Insall J. The Pridie debridement operation for osteoarthritis of the knee. Clin Orthop Relat Res. 1974;101:61–7.

    PubMed  Google Scholar 

  38. Kim HK, Moran ME, Salter RB. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg Am. 1991;73(9):1301–15.

    PubMed  CAS  Google Scholar 

  39. Meachim G, Roberts C. Repair of the joint surface from subarticular tissue in the rabbit knee. J Anat. 1971;109(2):317–27.

    PubMed  CAS  Google Scholar 

  40. Mitchell N, Shepard N. The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. J Bone Joint Surg Am. 1976;58(2):230–3.

    PubMed  CAS  Google Scholar 

  41. Rae PJ, Noble J. Arthroscopic drilling of osteochondral lesions of the knee. J Bone Joint Surg Br. 1989;71(3):534.

    PubMed  CAS  Google Scholar 

  42. Vachon A, Bramlage LR, Gabel AA, Weisbrode S. Evaluation of the repair process of cartilage defects of the equine third carpal bone with and without subchondral bone perforation. Am J Vet Res. 1986;47(12):2637–45.

    PubMed  CAS  Google Scholar 

  43. Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy. 1986;2(1):54–69.

    Article  PubMed  CAS  Google Scholar 

  44. Jackson RW. The scope of arthroscopy. Clin Orthop Relat Res. 1986;208:69–71.

    PubMed  Google Scholar 

  45. Ogilvie-Harris DJ, Fitsialos DP. Arthroscopic management of the degenerative knee. Arthroscopy. 1991;7(2):151–7.

    Article  PubMed  CAS  Google Scholar 

  46. Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D. Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res. 1995;29(9):1147–54.

    Article  PubMed  CAS  Google Scholar 

  47. Elford PR, Graeber M, Ohtsu H, Aeberhard M, Legendre B, Wishart WL, et al. Induction of swelling, synovial hyperplasia and cartilage proteoglycan loss upon intra-articular injection of transforming growth factor beta-2 in the rabbit. Cytokine. 1992;4(3):232–8.

    Article  PubMed  CAS  Google Scholar 

  48. Freed LE, Vunjak-Novakovic G, Langer R. Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem. 1993;51(3):257–64.

    Article  PubMed  CAS  Google Scholar 

  49. Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res. 1997;34(2):211–20.

    Article  PubMed  CAS  Google Scholar 

  50. Hendrickson DA, Nixon AJ, Grande DA, Todhunter RJ, Minor RM, Erb H, et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res. 1994;12(4):485–97.

    Article  PubMed  CAS  Google Scholar 

  51. Nixon AJ, Sams AE, Lust G, Grande D, Mohammed HO. Temporal matrix synthesis and histologic features of a chondrocyte-laden porous collagen cartilage analogue. Am J Vet Res. 1993;54(2):349–56.

    PubMed  CAS  Google Scholar 

  52. Reddi AH. Symbiosis of biotechnology and biomaterials: applications in tissue engineering of bone and cartilage. J Cell Biochem. 1994;56(2):192–5.

    Article  PubMed  CAS  Google Scholar 

  53. Convery FR, Meyers MH, Akeson WH. Fresh osteochondral allografting of the femoral condyle. Clin Orthop Relat Res. 1991;273:139–45.

    PubMed  Google Scholar 

  54. Czitrom AA, Keating S, Gross AE. The viability of articular cartilage in fresh osteochondral allografts after clinical transplantation. J Bone Joint Surg Am. 1990;72(4):574–81.

    PubMed  CAS  Google Scholar 

  55. Garrett JC. Treatment of osteochondral defects of the distal femur with fresh osteochondral allografts: a preliminary report. Arthroscopy. 1986;2(4):222–6.

    Article  PubMed  CAS  Google Scholar 

  56. Garrett JC. Fresh osteochondral allografts for treatment of articular defects in osteochondritis dissecans of the lateral femoral condyle in adults. Clin Orthop Relat Res. 1994;303:33–7.

    PubMed  Google Scholar 

  57. Garrett JC. Osteochondral allografts for reconstruction of articular defects of the knee. Instr Course Lect. 1998;47:517–22.

    PubMed  CAS  Google Scholar 

  58. Ghazavi MT, Pritzker KP, Davis AM, Gross AE. Fresh osteochondral allografts for post-traumatic osteochondral defects of the knee. J Bone Joint Surg Br. 1997;79(6):1008–13.

    Article  PubMed  CAS  Google Scholar 

  59. Gross AE, Aubin P, Cheah HK, Davis AM, Ghazavi MT. A fresh osteochondral allograft alternative. J Arthroplasty. 2002;17(4 Suppl 1):50–3.

    Article  PubMed  Google Scholar 

  60. Gross AE, McKee NH, Pritzker KP, Langer F. Reconstruction of skeletal deficits at the knee. A comprehensive osteochondral transplant program. Clin Orthop Relat Res. 1983;174:96–106.

    PubMed  Google Scholar 

  61. Horas U, Schnettler R, Pelinkovic D, Herr G, Aigner T. Osteochondral transplantation versus autogenous chondrocyte transplantation. A prospective comparative clinical study. Chirurg. 2000;71(9):1090–7.

    Article  PubMed  CAS  Google Scholar 

  62. Bugbee W, Cavallo M, Giannini S. Osteochondral allograft transplantation in the knee. J Knee Surg. 2012;25(2):109–16.

    Article  PubMed  Google Scholar 

  63. O’Driscoll SW, Keeley FW, Salter RB. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1986;68(7):1017–35.

    PubMed  Google Scholar 

  64. Skoog T, Johansson SH. The formation of articular cartilage from free perichondrial grafts. Plast Reconstr Surg. 1976;57(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  65. Homminga GN, Bulstra SK, Bouwmeester PS, van der Linden AJ. Perichondral grafting for cartilage lesions of the knee. J Bone Joint Surg Br. 1990;72(6):1003–7.

    PubMed  CAS  Google Scholar 

  66. Homminga GN, Bulstra SK, Kuijer R, van der Linden AJ. Repair of sheep articular cartilage defects with a rabbit costal perichondrial graft. Acta Orthop Scand. 1991;62(5):415–8.

    Article  PubMed  CAS  Google Scholar 

  67. Bouwmeester SJ, Beckers JM, Kuijer R, van der Linden AJ, Bulstra SK. Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee. Int Orthop. 1997;21(5):313–7.

    Article  PubMed  CAS  Google Scholar 

  68. Vachon A, McIlwraith CW, Trotter GW, Norrdin RW, Powers BE. Neochondrogenesis in free intra-articular, periosteal, and perichondrial autografts in horses. Am J Vet Res. 1989;50(10):1787–94.

    PubMed  CAS  Google Scholar 

  69. Steinberg MS. Mechanism of tissue reconstruction by dissociated cells. II. Time-course of events. Science. 1962;137:762–3.

    Article  PubMed  CAS  Google Scholar 

  70. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  PubMed  CAS  Google Scholar 

  71. Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17(2):149–55.

    Article  PubMed  CAS  Google Scholar 

  72. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.

    Article  PubMed  Google Scholar 

  73. Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am. 2009;91(7):1778–90.

    PubMed  Google Scholar 

  74. Caplan AI. New era of cell-based orthopedic therapies. Tissue Eng Part B Rev. 2009;15(2):195–200.

    Article  PubMed  CAS  Google Scholar 

  75. Hunziker EB, Kapfinger E, Geiss J. The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis Cartilage. 2007;15(4):403–13.

    Article  PubMed  CAS  Google Scholar 

  76. Khoshgoftar M, van Donkelaar CC, Ito K. Mechanical stimulation to stimulate formation of a physiological collagen architecture in tissue-engineered cartilage: a numerical study. Comput Methods Biomech Biomed Engin. 2011;14(2):135–44.

    Article  PubMed  Google Scholar 

  77. Kock LM, Ravetto A, van Donkelaar CC, Foolen J, Emans PJ, Ito K. Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulations. Osteoarthritis Cartilage. 2010;18(11):1528–35.

    Article  PubMed  CAS  Google Scholar 

  78. Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, et al. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures–initial experience. Radiology. 2008;247(1):154–61.

    Article  PubMed  Google Scholar 

  79. Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39(6):1170–9.

    Article  PubMed  Google Scholar 

  80. Hendriks J, Riesle J, van Blitterswijk CA. Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med. 2007;1(3):170–8.

    Article  PubMed  CAS  Google Scholar 

  81. Welting TJ, Caron MM, Emans PJ, Janssen MP, Sanen K, Coolsen MM, et al. Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification. Eur Cell Mater. 2011;22:420–36; discussion 436–7.

    PubMed  CAS  Google Scholar 

  82. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy. 2002;18(7):730–4.

    Article  PubMed  Google Scholar 

  83. Intema F, Van Roermund PM, Marijnissen AC, Cotofana S, Eckstein F, Castelein RM, et al. Tissue structure modification in knee osteoarthritis by use of joint distraction: an open 1-year pilot study. Ann Rheum Dis. 2011;70(8):1441–6.

    Article  PubMed  Google Scholar 

  84. Karsdal MA, Madsen SH, Christiansen C, Henriksen K, Fosang AJ, Sondergaard BC. Cartilage degradation is fully reversible in the presence of aggrecanase but not matrix metalloproteinase activity. Arthritis Res Ther. 2008;10(3):R63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter J. Emans PhD, MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Emans, P.J., Peterson, L. (2014). General Introduction. In: Emans, P., Peterson, L. (eds) Developing Insights in Cartilage Repair. Springer, London. https://doi.org/10.1007/978-1-4471-5385-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5385-6_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5384-9

  • Online ISBN: 978-1-4471-5385-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics