Skip to main content

Amyotrophic Lateral Sclerosis: Genotypes and Phenotypes

  • Chapter
  • First Online:
Neurodegenerative Diseases

Abstract

Mendelian forms of amyotrophic lateral sclerosis (ALS) account for nearly 10 % of all cases. To date, 19 disease genes, usually but not exclusively inherited with an autosomal dominant pattern, have been reported to be associated with ALS or with atypical motor neuron diseases with or without associated frontotemporal dementia (ALS-FTD). Often, it is possible to draw correlations between distinct ALS-associated mutations and specific clinical phenotypes. This information is essential for biologists and clinicians alike, providing at the same time an unparalleled insight into the pathogenesis of the disease and invaluable tools for genetic counseling, diagnosis, and development of preventive strategies and treatments for ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344:1688–700.

    PubMed  CAS  Google Scholar 

  2. Simon-Sanchez J, Dopper EG, Cohn-Hokke PE, Hukema RK, Nicolaou N, Seelaar H, et al. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain. 2012;135:723–5.

    PubMed  Google Scholar 

  3. de Belleroche J, Orrell R, King A. Familial amyotrophic lateral sclerosis/motor neurone disease (FALS): a review of current developments. J Med Genet. 1995;32:841–7.

    PubMed Central  PubMed  Google Scholar 

  4. Dejesus-Hernandez M, Rayaprolu S, Soto-Ortolaza AI, Rutherford NJ, Heckman MG, Traynor S, et al. Analysis of the C9orf72 repeat in Parkinson’s disease, essential tremor and restless legs syndrome. Parkinsonism Relat Disord. 2013;19(2):198–201.

    PubMed Central  PubMed  Google Scholar 

  5. Li TM, Alberman E, Swash M. Comparison of sporadic and familial disease amongst 580 cases of motor neuron disease. J Neurol Neurosurg Psychiatry. 1988;51:778–84.

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet. 2009;84:85–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, et al. ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet. 2006;38:411–3.

    PubMed  CAS  Google Scholar 

  8. Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet. 2001;29:166–73.

    PubMed  CAS  Google Scholar 

  9. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465:223–6.

    PubMed  CAS  Google Scholar 

  10. Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004;75:822–31.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Orlacchio A, Babalini C, Borreca A, Patrono C, Massa R, Basaran S, et al. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain. 2010;133:591–8.

    PubMed Central  PubMed  Google Scholar 

  12. Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet. 2001;29:160–5.

    PubMed  CAS  Google Scholar 

  13. Yeh TH, Lai SC, Weng YH, Kuo HC, Wu-Chou YH, Huang CL. Screening for C9orf72 repeat expansions in parkinsonian syndromes. Neurobiol Aging. 2012;34:1311.e3–4.

    Google Scholar 

  14. Siddique T, Figlewicz DA, Pericak-Vance MA, Haines JL, Rouleau G, Jeffers AJ, et al. Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity. N Engl J Med. 1991;324:1381–4.

    PubMed  CAS  Google Scholar 

  15. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.

    PubMed  CAS  Google Scholar 

  16. Andersen PM, Sims KB, Xin WW, Kiely R, O’Neill G, Ravits J, et al. Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:62–73.

    PubMed  CAS  Google Scholar 

  17. Cudkowicz ME, McKenna-Yasek D, Sapp PE, Chin W, Geller B, Hayden DL, et al. Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann Neurol. 1997;41:210–21.

    PubMed  CAS  Google Scholar 

  18. Juneja T, Pericak-Vance MA, Laing NG, Dave S, Siddique T. Prognosis in familial amyotrophic lateral sclerosis: progression and survival in patients with glu100gly and ala4val mutations in Cu, Zn superoxide dismutase. Neurology. 1997;48:55–7.

    PubMed  CAS  Google Scholar 

  19. Akimoto C, Forsgren L, Linder J, Birve A, Backlund I, Andersson J, et al. No GGGGCC-hexanucleotide repeat expansion in C9ORF72 in parkinsonism patients in Sweden. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14:26–9.

    PubMed  CAS  Google Scholar 

  20. Ratti A, Corrado L, Castellotti B, Del Bo R, Fogh I, Cereda C. C9ORF72 repeat expansion in a large Italian ALS cohort: evidence of a founder effect. Neurobiol Aging. 2012;33:2528.e7–14.

    CAS  Google Scholar 

  21. Kohno S, Takahashi Y, Miyajima H, Serizawa M, Mizoguchi K. A novel mutation (Cys6Gly) in the Cu/Zn superoxide dismutase gene associated with rapidly progressive familial amyotrophic lateral sclerosis. Neurosci Lett. 1999;276:135–7.

    PubMed  CAS  Google Scholar 

  22. Morita M, Aoki M, Abe K, Hasegawa T, Sakuma R, Onodera Y, et al. A novel two-base mutation in the Cu/Zn superoxide dismutase gene associated with familial amyotrophic lateral sclerosis in Japan. Neurosci Lett. 1996;205:79–82.

    PubMed  CAS  Google Scholar 

  23. Aoki M, Ogasawara M, Matsubara Y, Narisawa K, Nakamura S, et al. Mild ALS in Japan associated with novel SOD mutation. Nat Genet. 1993;5:323–4.

    PubMed  CAS  Google Scholar 

  24. Luigetti M, Madia F, Conte A, Marangi G, Zollino M, Del Grande A, et al. SOD1 G93D mutation presenting as paucisymptomatic amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10(5–6):479–82.

    PubMed  CAS  Google Scholar 

  25. Orrell RW, Habgood JJ, Malaspina A, Mitchell J, Greenwood J, Lane RJ, deBelleroche JS. Clinical characteristics of SOD1 gene mutations in UK families with ALS. J Neurol Sci. 1999;169:56–60.

    PubMed  CAS  Google Scholar 

  26. Felbecker A, Camu W, Valdmanis PN, Sperfeld AD, Waibel S, Steinbach P, et al. Four familial ALS pedigrees discordant for two SOD1 mutations: are all SOD1 mutations pathogenic? J Neurol Neurosurg Psychiatry. 2010;81:572–7.

    PubMed  Google Scholar 

  27. Andersen PM, Forsgren L, Binzer M, Nilsson P, Ala-Hurula V, Keranen ML. Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. Brain. 1996;119(Pt 4):1153–72.

    PubMed  Google Scholar 

  28. Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 2011;11:54–65.

    PubMed  Google Scholar 

  29. Al-Chalabi A, Andersen PM, Chioza B, Shaw C, Sham PC, Robberecht W, et al. Recessive amyotrophic lateral sclerosis families with the D90A SOD1 mutation share a common founder: evidence for a linked protective factor. Hum Mol Genet. 1998;7:2045–50.

    PubMed  CAS  Google Scholar 

  30. Gellera C, Castellotti B, Riggio MC, Silani V, Morandi L, et al. Superoxide dismutase gene mutations in Italian patients with familial and sporadic amyotrophic lateral sclerosis: identification of three novel missense mutations. Neurol Disord. 2001;11:404–10.

    Google Scholar 

  31. Buratti E, Baralle FE. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci. 2008;13:867–78.

    PubMed  CAS  Google Scholar 

  32. Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, et al. TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol. 2008;63:535–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Iida A, Kamei T, Sano M, Oshima S, Tokuda T, Nakamura Y, Ikegawa S. Large-scale screening of TARDBP mutation in amyotrophic lateral sclerosis in Japanese. Neurobiol Aging. 2012;33(4):786–90.

    PubMed  CAS  Google Scholar 

  34. Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008;40:572–4.

    PubMed  CAS  Google Scholar 

  35. Kamada M, Maruyama H, Tanaka E, Morino H, Wate R, Ito H, et al. Screening for TARDBP mutations in Japanese familial amyotrophic lateral sclerosis. J Neurol Sci. 2009;284:69–71.

    PubMed  CAS  Google Scholar 

  36. Kuhnlein P, Sperfeld AD, Vanmassenhove B, Van Deerlin V, Lee VM, Trojanowski JQ, et al. Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch Neurol. 2008;65:1185–9.

    PubMed Central  PubMed  Google Scholar 

  37. Lemmens R, Race V, Hersmus N, Matthijs G, Van Den Bosch L, Van Damme P, et al. TDP-43 M311V mutation in familial amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2009;80:354–5.

    PubMed  CAS  Google Scholar 

  38. Millecamps S, Salachas F, Cazeneuve C, Gordon P, Bricka B, Camuzat A, et al. SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet. 2010;47:554–60.

    PubMed  CAS  Google Scholar 

  39. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319:1668–72.

    PubMed  CAS  Google Scholar 

  40. Tsai CP, Soong BW, Lin KP, Tu PH, Lin JL, Lee YC. FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS. Neurobiol Aging. 2010;32(3):553.e13–21.

    Google Scholar 

  41. Van Deerlin VM, Leverenz JB, Bekris LM, Bird TD, Yuan W, Elman LB, et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 2008;7:409–16.

    PubMed Central  PubMed  Google Scholar 

  42. Corcia P, Valdmanis P, Millecamps S, Lionnet C, Blasco H, Mouzat K, et al. Phenotype and genotype analysis in amyotrophic lateral sclerosis with TARDBP gene mutations. Neurology. 2012;78:1519–26.

    PubMed  CAS  Google Scholar 

  43. Borghero G, Floris G, Cannas A, Marrosu MG, Murru MR, Costantino E. A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD. Neurobiol Aging. 2012;32:2327 e1–5.

    Google Scholar 

  44. Ticozzi N, Tiloca C, Mencacci NE, Morelli C, Doretti A, Rusconi D, et al. Oligoclonal bands in the cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated mutations. J Neurol. 2012;260:85–92.

    PubMed  Google Scholar 

  45. Orru S, Manolakos E, Orru N, Kokotas H, Mascia V, Carcassi C, Petersen MB. High frequency of the TARDBP p.Ala382Thr mutation in Sardinian patients with amyotrophic lateral sclerosis. Clin Genet. 2011;81:172–8.

    PubMed  Google Scholar 

  46. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Abalkhail H, Mitchell J, Habgood J, Orrell R, de Belleroche J. A new familial amyotrophic lateral sclerosis locus on chromosome 16q12.1-16q12.2. Am J Hum Genet. 2003;73:383–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Ruddy DM, Parton MJ, Al-Chalabi A, Lewis CM, Vance C, Smith BN. Two families with familial amyotrophic lateral sclerosis are linked to a novel locus on chromosome 16q. Am J Hum Genet. 2003;73:390–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Sapp PC, Hosler BA, McKenna-Yasek D, Chin W, Gann A, Genise H, et al. Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet. 2003;73:397–403.

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323:1208–11.

    PubMed  CAS  Google Scholar 

  51. Law WJ, Cann KL, Hicks GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic. 2006;5:8–14.

    PubMed  CAS  Google Scholar 

  52. Belzil VV, Valdmanis PN, Dion PA, Daoud H, Kabashi E, Noreau A, et al. Mutations in FUS cause FALS and SALS in French and French Canadian populations. Neurology. 2009;73:1176–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Blair IP, Williams KL, Warraich ST, Durnall JC, Thoeng AD, Manavis J, et al. FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. J Neurol Neurosurg Psychiatry. 2009;81:639–45.

    PubMed  Google Scholar 

  54. Chio A, Restagno G, Brunetti M, Ossola I, Calvo A, Mora G, et al. Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation. Neurobiol Aging. 2009;30:1272–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Cooper-Knock J, Hewitt C, Highley JR, Brockington A, Milano A, Man S, et al. Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain. 2012;135:751–64.

    PubMed Central  PubMed  Google Scholar 

  56. Van Damme P, Goris A, Race V, Hersmus N, Dubois B, Bosch LV, et al. The occurrence of mutations in FUS in a Belgian cohort of patients with familial ALS. Eur J Neurol. 2009;17:754–6.

    PubMed  Google Scholar 

  57. Drepper C, Herrmann T, Wessig C, Beck M, Sendtner M. C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging. 2011;32(3):548.e1–4.

    Google Scholar 

  58. Rademakers R, Stewart H, Dejesus-Hernandez M, Krieger C, Graff-Radford N, Fabros M, et al. Fus gene mutations in familial and sporadic amyotrophic lateral sclerosis. Muscle Nerve. 2010;42:170–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Robertson J, Bilbao J, Zinman L, Hazrati LN, Tokuhiro S, Sato C. A novel double mutation in FUS gene causing sporadic ALS. Neurobiol Aging. 2011;3:553.e27–30.

    Google Scholar 

  60. Waibel S, Neumann M, Rabe M, Meyer T, Ludolph AC. Novel missense and truncating mutations in FUS/TLS in familial ALS. Neurology. 2010;75(9):815–7.

    PubMed  CAS  Google Scholar 

  61. Yamamoto-Watanabe Y, Watanabe M, Okamoto K, Fujita Y, Jackson M, Ikeda M, et al. A Japanese ALS6 family with mutation R521C in the FUS/TLS gene: A clinical, pathological and genetic report. J Neurol Sci. 2010;296:59–63.

    PubMed  CAS  Google Scholar 

  62. Yan J, Deng HX, Siddique N, Fecto F, Chen W, Yang Y, et al. Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology. 2010;75:807–14.

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Lattante S, Conte A, Zollino M, Luigetti M, Del Grande A, Marangi G, et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology. 2012;79:66–72.

    PubMed  CAS  Google Scholar 

  64. Le Ber I, Camuzat A, Berger E, Hannequin D, Laquerriere A, Golfier V. Chromosome 9p-linked families with frontotemporal dementia associated with motor neuron disease. Neurology. 2009;72:1669–76.

    PubMed  Google Scholar 

  65. Luty AA, Kwok JB, Thompson EM, Blumbergs P, Brooks WS, Loy CT, et al. Pedigree with frontotemporal lobar degeneration–motor neuron disease and Tar DNA binding protein-43 positive neuropathology: genetic linkage to chromosome 9. BMC Neurol. 2008;8:32.

    PubMed Central  PubMed  Google Scholar 

  66. Morita M, Al-Chalabi A, Andersen PM, Hosler B, Sapp P, Englund E, et al. A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology. 2006;66:839–44.

    PubMed  CAS  Google Scholar 

  67. Valdmanis PN, Dupre N, Bouchard JP, Camu W, Salachas F, Meininger V, et al. Three families with amyotrophic lateral sclerosis and frontotemporal dementia with evidence of linkage to chromosome 9p. Arch Neurol. 2007;64:240–5.

    PubMed  Google Scholar 

  68. Vance C, Al-Chalabi A, Ruddy D, Smith BN, Hu X, Sreedharan J, et al. Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. Brain. 2006;129:868–76.

    PubMed  Google Scholar 

  69. Byrne S, Elamin M, Bede P, Shatunov A, Walsh C, Corr B, et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol. 2012;11:232–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Laaksovirta H, Peuralinna T, Schymick JC, Scholz SW, Lai SL, Myllykangas L, et al. Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol. 2010;9:978–85.

    PubMed Central  PubMed  CAS  Google Scholar 

  71. van Es MA, Veldink JH, Saris CG, Blauw HM, van Vught PW, Birve A, et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet. 2009;41:1083–7.

    PubMed  Google Scholar 

  72. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet. 2013;92:345–53.

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Snowden JS, Rollinson S, Thompson JC, Harris JM, Stopford CL, Richardson AM, et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain. 2012;135(Pt 3):693–708.

    PubMed Central  PubMed  Google Scholar 

  75. Stewart H, Rutherford NJ, Briemberg H, Krieger C, Cashman N, Fabros M, et al. Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p. Acta Neuropathol. 2012;123:409–17.

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Hosler BA, Siddique T, Sapp PC, Sailor W, Huang MC, Hossain A. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. JAMA. 2000;284:1664–9.

    PubMed  CAS  Google Scholar 

  77. Boxer AL, Mackenzie IR, Boeve BF, Baker M, Seeley WW, Crook R, et al. Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family. J Neurol Neurosurg Psychiatry. 2011;82:196–203.

    PubMed Central  PubMed  Google Scholar 

  78. Lindquist SG, Duno M, Batbayli M, Puschmann A, Braendgaard H, Mardosiene S, et al. Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease. Clin Genet. 2013;83:279–83.

    PubMed  CAS  Google Scholar 

  79. Brettschneider J, Tredici KD, Toledo JB, Robinson JL, Irwin DJ, Grossman M, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol. 2013;74(1):20–38.

    PubMed  CAS  Google Scholar 

  80. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3.

    PubMed  CAS  Google Scholar 

  81. Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR. Frontotemporal lobar degeneration with FUS pathology. Brain. 2009;132(Pt 11):2922–31.

    PubMed Central  PubMed  Google Scholar 

  82. Seelaar H, Klijnsma KY, de Koning I, van der Lugt A, Chiu WZ, Azmani A, et al. Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration. J Neurol. 2010;257(5):747–53.

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Youngsaye W, Dockendorff C, Vincent B, Hartland CL, Bittker JA, Dandapani S, et al. Overcoming fluconazole resistance in Candida albicans clinical isolates with tetracyclic indoles. Bioorg Med Chem Lett. 2012;22:3362–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Borroni B, Bonvicini C, Alberici A, Buratti E, Agosti C, Archetti S, et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat. 2009;30:E974–83.

    PubMed  CAS  Google Scholar 

  85. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset alS and ALS/dementia. Nature. 2011;477:211–5.

    Google Scholar 

  86. Wilhelmsen KC, Lynch T, Pavlou E, Higgins M, Nygaard TG. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am J Hum Genet. 1994;55:1159–65.

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Zarranz JJ, Ferrer I, Lezcano E, Forcadas MI, Eizaguirre B, Atares B, et al. A novel mutation (K317M) in the MAPT gene causes FTDP and motor neuron disease. Neurology. 2005;64:1578–85.

    PubMed  CAS  Google Scholar 

  88. Parkinson N, Ince PG, Smith MO, Highley R, Skibinski G, Andersen PM, et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology. 2006;67:1074–7.

    PubMed  CAS  Google Scholar 

  89. Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummerich H, et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005;37:806–8.

    PubMed  CAS  Google Scholar 

  90. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36:377–81.

    PubMed  CAS  Google Scholar 

  91. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68:857–64.

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Ben Hamida M, Hentati F, Ben Hamida C. Hereditary motor system diseases (chronic juvenile amyotrophic lateral sclerosis). Conditions combining a bilateral pyramidal syndrome with limb and bulbar amyotrophy. Brain. 1990;113(Pt 2):347–63.

    PubMed  Google Scholar 

  93. Devon RS, Helm JR, Rouleau GA, Leitner Y, Lerman-Sagie T, Lev D, Hayden MR. The first nonsense mutation in alsin results in a homogeneous phenotype of infantile-onset ascending spastic paralysis with bulbar involvement in two siblings. Clin Genet. 2003;64:210–5.

    PubMed  CAS  Google Scholar 

  94. Eymard-Pierre E, Yamanaka K, Haeussler M, Kress W, Gauthier-Barichard F, Combes P, et al. Novel missense mutation in ALS2 gene results in infantile ascending hereditary spastic paralysis. Ann Neurol. 2006;59:976–80.

    PubMed  CAS  Google Scholar 

  95. Gros-Louis F, Meijer IA, Hand CK, Dube MP, MacGregor DL, Seni MH, et al. An ALS2 gene mutation causes hereditary spastic paraplegia in a Pakistani kindred. Ann Neurol. 2003;53:144–5.

    PubMed  CAS  Google Scholar 

  96. Kress JA, Kuhnlein P, Winter P, Ludolph AC, Kassubek J, Muller U, Sperfeld AD. Novel mutation in the ALS2 gene in juvenile amyotrophic lateral sclerosis. Ann Neurol. 2005;58:800–3.

    PubMed  CAS  Google Scholar 

  97. Panzeri C, De Palma C, Martinuzzi A, Daga A, De Polo G, Bresolin N, et al. The first ALS2 missense mutation associated with JPLS reveals new aspects of alsin biological function. Brain. 2006;129:1710–9.

    PubMed  Google Scholar 

  98. Stevanin G, Santorelli FM, Azzedine H, Coutinho P, Chomilier J, Denora PS, et al. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet. 2007;39:366–72.

    PubMed  CAS  Google Scholar 

  99. Chance PF, Rabin BA, Ryan SG, Ding Y, Scavina M, Crain B, et al. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am J Hum Genet. 1998;62:633–40.

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Myrianthopoulos NC, Lane MH, Silberberg DH, Vincent BL. Nerve conduction and other studies in families with Charcot-Marie-tooth disease. Brain. 1964;87:589–608.

    PubMed  CAS  Google Scholar 

  101. Moreira MC, Klur S, Watanabe M, Nemeth AH, Le Ber I, Moniz JC, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet. 2004;36:225–7.

    PubMed  CAS  Google Scholar 

  102. Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, et al. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature. 2007;448:68–72.

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Nishimura AL, Mitne-Neto M, Silva HC, Oliveira JR, Vainzof M, Zatz M. A novel locus for late onset amyotrophic lateral sclerosis/motor neurone disease variant at 20q13. J Med Genet. 2004;41:315–20.

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Landers JE, Leclerc AL, Shi L, Virkud A, Cho T, Maxwell MM, et al. New VAPB deletion variant and exclusion of VAPB mutations in familial ALS. Neurology. 2008;70:1179–85.

    PubMed  CAS  Google Scholar 

  105. Wu CH, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012;488:499–503.

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Silani MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Ticozzi, N., Silani, V. (2014). Amyotrophic Lateral Sclerosis: Genotypes and Phenotypes. In: Galimberti, D., Scarpini, E. (eds) Neurodegenerative Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-6380-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6380-0_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6379-4

  • Online ISBN: 978-1-4471-6380-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics