Skip to main content

Applied Renal Physiology in the PICU

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

The kidneys are central to numerous homeostatic mechanisms in the body. Responsible for solute and fluid handling, removal of waste products of nutrients, metabolism, detoxification, and excretion of drugs and metabolites, and regulation of vascular tone, the kidneys also elaborate many metabolites that act in local and distant fashion. The kidneys receive a high proportion of cardiac output per minute and have a high rate of oxygen consumption, evidence of the intensity of regulation that occurs in perpetuity. In this chapter, we will discuss renal physiology using the structure as background, function, and response to illness. Both hemodynamics and filtration will be described in detail. Relevant examples of how commonly encountered disease states affect kidney function will be discussed. Finally, the emerging paradigm of crosstalk between the kidneys and other vital organs will be broached. Critical illness carries dramatic consequence on kidney function and understanding the elements of how the kidneys regulate their own mechanics, and what happens when these compensatory mechanisms are overwhelmed, is essential to practitioners in the pediatric intensive care unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE-I:

Angiotensin converting enzyme inh

ADH:

Anti-diuretic hormone

AE1:

Anion exchanger

ANG-II:

Angiotensin 2

ANP:

Atrial natriuretic peptide

AQP:

Aquaporin

ARB:

Angiotensin receptor blockers

AVP:

Arginine vasopressin

CA:

Carbonic anhydrase

Ca2+ :

Calcium

Ca2+-ATPase:

Calcium ATPase

CD:

Collecting duct

Cl :

Chloride

DCT:

Distal convoluted tubule

ENaC:

Epithelial sodium channel

GBM:

Glomerular basement membrane

GCP:

Glomerular capillary perfusion

GFR:

Glomerular filtration rate

GLUT:

Glucose transporter

H+-ATPase:

Hydrogen ATPase

HCO3 :

Bicarbonate

HIF-1:

Hypoxia inducible factor

JGA:

Juxtaglomerular apparatus

K+ :

Potassium

LH:

Loop of henle

MCD:

Medullary collecting duct

MR:

Myogenic reflex

Na+ :

Sodium

Na+-K+-ATPase:

Sodium-potassium ATPase

NaCl:

Sodium chloride

NH3 :

Ammonia

NHE3:

Sodium hydrogen exchanger

NO:

Nitric oxide

NPHS1:

Nephrin

NPHS2:

Podocin

PLCE:

Phospholipase C epsilon

PO4 3− :

Phosphate

PT:

Proximal tubule

PTH:

Parathyroid hormone

RAAS:

Renin-angiotensin-aldosterone

RBF:

Renal blood flow

RPP:

Renal perfusion pressure

RvO2 :

Oxygen consumption

RVR:

Renal vascular resistance

SGLT:

Sodium-glucose transporters

SNGFR:

Single nephron GFR

SSAKI:

Severe sepsis associated AKI

TAL:

Thick ascending limb

TAL:

Thick ascending loop of henle

TGR:

Tubuloglomerular feedback

TPRC6:

Transient receptor potential

References

  1. Carew RM, Wang B, Kantharidis P. The role of EMT in renal fibrosis. Cell Tissue Res. 2012;347(1):103–16.

    Article  CAS  PubMed  Google Scholar 

  2. Hatch FE, Johnson JG. Intrarenal blood flow. Annu Rev Med. 1969;20:395–408.

    Article  CAS  PubMed  Google Scholar 

  3. Grunfeld JP, et al. Intrarenal distribution of blood flow. Adv Nephrol Necker Hosp. 1971;1:125–43.

    CAS  PubMed  Google Scholar 

  4. Rosenberger C, Rosen S, Heyman SN. Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury. Clin Exp Pharmacol Physiol. 2006;33(10):980–8.

    Article  CAS  PubMed  Google Scholar 

  5. Heyman SN, Rosenberger C, Rosen S. Regional alterations in renal haemodynamics and oxygenation: a role in contrast medium-induced nephropathy. Nephrol Dial Transplant. 2005;20 Suppl 1:i6–11.

    Article  CAS  PubMed  Google Scholar 

  6. Graves FT. The arterial anatomy of the kidney: the basis of surgical technique. Bristol: John Wright; 1971. p. xi. 101 p.

    Google Scholar 

  7. McCrory WW. Developmental nephrology. Cambridge: Harvard University Press; 1972. p. xii. 216 p.

    Google Scholar 

  8. Hunley TE, Kon V, Ichikawa I. Glomerular circulation and function. In: Harmon WE, Avner ED, Niaudet P, Yoshikawa N, editors. Pediatric nephrology. Heidelberg: Springer; 2009. p. 31.

    Chapter  Google Scholar 

  9. Visser MO, et al. Renal blood flow in neonates: quantification with color flow and pulsed Doppler US. Radiology. 1992;183(2):441–4.

    Article  CAS  PubMed  Google Scholar 

  10. Strickland AL, Kotchen TA. A study of the renin-aldosterone system in congenital adrenal hyperplasia. J Pediatr. 1972;81(5):962–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kotchen TA, et al. A study of the renin-angiotensin system in newborn infants. J Pediatr. 1972;80(6):938–46.

    Article  CAS  PubMed  Google Scholar 

  12. Eliot RJ, et al. Plasma catecholamine concentrations in infants at birth and during the first 48 hours of life. J Pediatr. 1980;96(2):311–5.

    Article  CAS  PubMed  Google Scholar 

  13. O’Rourke M. Mechanical principles in arterial disease. Hypertension. 1995;26(1):2–9.

    Article  PubMed  Google Scholar 

  14. Fretschner M, et al. A narrow segment of the efferent arteriole controls efferent resistance in the hydronephrotic rat kidney. Kidney Int. 1990;37(5):1227–39.

    Article  CAS  PubMed  Google Scholar 

  15. Casellas D, Navar LG. In vitro perfusion of juxtamedullary nephrons in rats. Am J Physiol. 1984;246(3 Pt 2):F349–58.

    CAS  PubMed  Google Scholar 

  16. Imig JD, Roman RJ. Nitric oxide modulates vascular tone in preglomerular arterioles. Hypertension. 1992;19(6 Pt 2):770–4.

    Article  CAS  PubMed  Google Scholar 

  17. Badr KF, Ichikawa I. Prerenal failure: a deleterious shift from renal compensation to decompensation. N Engl J Med. 1988;319(10):623–9.

    Article  CAS  PubMed  Google Scholar 

  18. Helou CM, et al. Angiotensin receptor subtypes in thin and muscular juxtamedullary efferent arterioles of rat kidney. Am J Physiol Renal Physiol. 2003;285(3):F507–14.

    Article  PubMed  Google Scholar 

  19. Yuan BH, Robinette JB, Conger JD. Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles. Am J Physiol. 1990;258(3 Pt 2):F741–50.

    CAS  PubMed  Google Scholar 

  20. Denton KM, et al. Morphometric analysis of the actions of angiotensin II on renal arterioles and glomeruli. Am J Physiol. 1992;262(3 Pt 2):F367–72.

    CAS  PubMed  Google Scholar 

  21. Denton KM, et al. Effect of endothelin-1 on regional kidney blood flow and renal arteriole calibre in rabbits. Clin Exp Pharmacol Physiol. 2004;31(8):494–501.

    Article  CAS  PubMed  Google Scholar 

  22. Kimura K, et al. Effects of atrial natriuretic peptide on renal arterioles: morphometric analysis using microvascular casts. Am J Physiol. 1990;259(6 Pt 2):F936–44.

    CAS  PubMed  Google Scholar 

  23. Edwards RM, Trizna W, Kinter LB. Renal microvascular effects of vasopressin and vasopressin antagonists. Am J Physiol. 1989;256(2 Pt 2):F274–8.

    CAS  PubMed  Google Scholar 

  24. Parekh N, et al. Nitric oxide modulates angiotensin II- and norepinephrine-dependent vasoconstriction in rat kidney. Am J Physiol. 1996;270(3 Pt 2):R630–5.

    CAS  PubMed  Google Scholar 

  25. Parekh N, Zou AP. Role of prostaglandins in renal medullary circulation: response to different vasoconstrictors. Am J Physiol. 1996;271(3 Pt 2):F653–8.

    CAS  PubMed  Google Scholar 

  26. Hayashi K, et al. Disparate effects of calcium antagonists on renal microcirculation. Hypertens Res. 1996;19(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kon V, Fogo A, Ichikawa I. Bradykinin causes selective efferent arteriolar dilation during angiotensin I converting enzyme inhibition. Kidney Int. 1993;44(3):545–50.

    Article  CAS  PubMed  Google Scholar 

  28. Steinhausen M, et al. Responses of in vivo renal microvessels to dopamine. Kidney Int. 1986;30(3):361–70.

    Article  CAS  PubMed  Google Scholar 

  29. Loutzenhiser R, Bidani A, Chilton L. Renal myogenic response: kinetic attributes and physiological role. Circ Res. 2002;90(12):1316–24.

    Article  CAS  PubMed  Google Scholar 

  30. Schnermann J, Briggs JP. Tubuloglomerular feedback: mechanistic insights from gene-manipulated mice. Kidney Int. 2008;74(4):418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197.

    CAS  PubMed  Google Scholar 

  32. Dzau VJ, et al. Prostaglandins in severe congestive heart failure. Relation to activation of the renin–angiotensin system and hyponatremia. N Engl J Med. 1984;310(6):347–52.

    Article  CAS  PubMed  Google Scholar 

  33. De Nicola L, Blantz RC, Gabbai FB. Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat. J Clin Invest. 1992;89(4):1248–56.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Blantz RC. Pathophysiology of pre-renal azotemia. Kidney Int. 1998;53(2):512–23.

    Article  CAS  PubMed  Google Scholar 

  35. Wan L, et al. Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med. 2008;36(4 Suppl):S198–203.

    Article  PubMed  Google Scholar 

  36. Boffa JJ, Arendshorst WJ. Maintenance of renal vascular reactivity contributes to acute renal failure during endotoxemic shock. J Am Soc Nephrol. 2005;16(1):117–24.

    Article  PubMed  Google Scholar 

  37. Gambaro G, Perazella MA. Adverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors. J Intern Med. 2003;253(6):643–52.

    Article  CAS  PubMed  Google Scholar 

  38. Franklin SS, Smith RD. A comparison of enalapril plus hydrochlorothiazide with standard triple therapy in renovascular hypertension. Nephron. 1986;44 Suppl 1:73–82.

    PubMed  Google Scholar 

  39. Okuyama H, et al. Effects of synchronous pulsatile extracorporeal membrane oxygenation in an endotoxin-induced shock model: an experimental study. Artif Organs. 1992;16(5):477–84.

    Article  CAS  PubMed  Google Scholar 

  40. Roy BJ, Cornish JD, Clark RH. Venovenous extracorporeal membrane oxygenation affects renal function. Pediatrics. 1995;95(4):573–8.

    CAS  PubMed  Google Scholar 

  41. Drenckhahn D, et al. Ultrastructural organization of contractile proteins in rat glomerular mesangial cells. Am J Pathol. 1990;137(6):1343–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ballermann BJ. Contribution of the endothelium to the glomerular permselectivity barrier in health and disease. Nephron Physiol. 2007;106(2):19–25.

    Article  Google Scholar 

  43. Miner JH, Sanes JR. Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J Cell Biol. 1994;127(3):879–91.

    Article  CAS  PubMed  Google Scholar 

  44. Hassell JR, et al. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980;77(8):4494–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Groffen AJ, et al. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J Histochem Cytochem. 1998;46(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  46. Caulfield JP, Farquhar MG. Loss of anionic sites from the glomerular basement membrane in aminonucleoside nephrosis. Lab Invest. 1978;39(5):505–12.

    CAS  PubMed  Google Scholar 

  47. Drumond MC, et al. Structural basis for reduced glomerular filtration capacity in nephrotic humans. J Clin Invest. 1994;94(3):1187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adler S. Integrin receptors in the glomerulus: potential role in glomerular injury. Am J Physiol. 1992;262(5 Pt 2):F697–704.

    CAS  PubMed  Google Scholar 

  49. Regele HM, et al. Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. J Am Soc Nephrol. 2000;11(3):403–12.

    CAS  PubMed  Google Scholar 

  50. Mundel P, et al. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol. 1997;139(1):193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huber TB, et al. Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. J Clin Invest. 2006;116(5):1337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Patrie KM, et al. The membrane-associated guanylate kinase protein MAGI-1 binds megalin and is present in glomerular podocytes. J Am Soc Nephrol. 2001;12(4):667–77.

    CAS  PubMed  Google Scholar 

  53. Takeda T, et al. Expression of podocalyxin inhibits cell-cell adhesion and modifies junctional properties in Madin-Darby canine kidney cells. Mol Biol Cell. 2000;11(9):3219–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sellin L, et al. NEPH1 defines a novel family of podocin interacting proteins. FASEB J. 2003;17(1):115–7.

    CAS  PubMed  Google Scholar 

  55. Neal CR, et al. Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions. Am J Physiol Renal Physiol. 2007;293(6):F1787–98.

    Article  CAS  PubMed  Google Scholar 

  56. Deen WM, Lazzara MJ, Myers BD. Structural determinants of glomerular permeability. Am J Physiol Renal Physiol. 2001;281(4):F579–96.

    CAS  PubMed  Google Scholar 

  57. Ohlson M, Sorensson J, Haraldsson B. A gel-membrane model of glomerular charge and size selectivity in series. Am J Physiol Renal Physiol. 2001;280(3):F396–405.

    CAS  PubMed  Google Scholar 

  58. Deen WM, et al. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol. 1985;249(3 Pt 2):F374–89.

    CAS  PubMed  Google Scholar 

  59. Herget-Rosenthal S, Bokenkamp A, Hofmann W. How to estimate GFR-serum creatinine, serum cystatin C or equations? Clin Biochem. 2007;40(3–4):153–61.

    Article  CAS  PubMed  Google Scholar 

  60. Schwartz GJ, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stevens LA, et al. Assessing kidney function–measured and estimated glomerular filtration rate. N Engl J Med. 2006;354(23):2473–83.

    Article  CAS  PubMed  Google Scholar 

  62. Kim KE, et al. Creatinine clearance in renal disease. A reappraisal. Br Med J. 1969;4(5674):11–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.

    Article  PubMed  Google Scholar 

  64. Peti-Peterdi J, Bell PD. Cytosolic [Ca2+] signaling pathway in macula densa cells. Am J Physiol. 1999;277(3 Pt 2):F472–6.

    CAS  PubMed  Google Scholar 

  65. Briggs JP, Schnermann JB. Whys and wherefores of juxtaglomerular apparatus function. Kidney Int. 1996;49(6):1724–6.

    Article  CAS  PubMed  Google Scholar 

  66. Schnermann J, Briggs J. Role of the renin-angiotensin system in tubuloglomerular feedback. Fed Proc. 1986;45(5):1426–30.

    CAS  PubMed  Google Scholar 

  67. Shemesh O, et al. Effect of colloid volume expansion on glomerular barrier size-selectivity in humans. Kidney Int. 1986;29(4):916–23.

    Article  CAS  PubMed  Google Scholar 

  68. Kestila M, et al. Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1(4):575–82.

    Article  CAS  PubMed  Google Scholar 

  69. Caridi G, et al. Infantile steroid-resistant nephrotic syndrome associated with double homozygous mutations of podocin. Am J Kidney Dis. 2004;43(4):727–32.

    Article  PubMed  Google Scholar 

  70. Winn MP, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308(5729):1801–4.

    Article  CAS  PubMed  Google Scholar 

  71. Weins A, et al. Mutational and biological analysis of alpha-actinin-4 in focal segmental glomerulosclerosis. J Am Soc Nephrol. 2005;16(12):3694–701.

    Article  CAS  PubMed  Google Scholar 

  72. Hinkes B, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38(12):1397–405.

    Article  CAS  PubMed  Google Scholar 

  73. O’Connor PM. Renal oxygen delivery: matching delivery to metabolic demand. Clin Exp Pharmacol Physiol. 2006;33(10):961–7.

    Article  PubMed  CAS  Google Scholar 

  74. Kone BC. Metabolic basis of solute transport. In: Brenner BM, Rector FC, editors. Brenner and Rector’s the kidney, vol. 1. 8th ed. Philadelphia: Saunders Elsevier; 2008. p. 130.

    Google Scholar 

  75. Feraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev. 2001;81(1):345–418.

    CAS  PubMed  Google Scholar 

  76. Christov M, Alper SL. Tubular transport: core curriculum 2010. Am J Kidney Dis. 2010;56(6):1202–17.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hughson M, et al. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 2003;63(6):2113–22.

    Article  PubMed  Google Scholar 

  78. Wang T, et al. Role of NHE isoforms in mediating bicarbonate reabsorption along the nephron. Am J Physiol Renal Physiol. 2001;281(6):F1117–22.

    CAS  PubMed  Google Scholar 

  79. Preisig PA, et al. Role of the Na+/H + antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest. 1987;80(4):970–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aalkjaer C, et al. Sodium coupled bicarbonate transporters in the kidney, an update. Acta Physiol Scand. 2004;181(4):505–12.

    Article  CAS  PubMed  Google Scholar 

  81. Wang T, et al. Mechanisms of stimulation of proximal tubule chloride transport by formate and oxalate. Am J Physiol. 1996;271(2 Pt 2):F446–50.

    CAS  PubMed  Google Scholar 

  82. Berry CA, Rector Jr FC. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney. Semin Nephrol. 1991;11(2):86–97.

    CAS  PubMed  Google Scholar 

  83. Rector Jr FC. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol. 1983;244(5):F461–71.

    PubMed  Google Scholar 

  84. Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch. 2004;447(5):510–8.

    Article  CAS  PubMed  Google Scholar 

  85. Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch. 2004;447(5):480–9.

    Article  CAS  PubMed  Google Scholar 

  86. Forster IC, et al. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int. 2006;70(9):1548–59.

    Article  CAS  PubMed  Google Scholar 

  87. Biber J, et al. Parathyroid hormone-mediated regulation of renal phosphate reabsorption. Nephrol Dial Transplant. 2000;15 Suppl 6:29–30.

    Article  CAS  PubMed  Google Scholar 

  88. Gonska T, Hirsch JR, Schlatter E. Amino acid transport in the renal proximal tubule. Amino Acids. 2000;19(2):395–407.

    Article  CAS  PubMed  Google Scholar 

  89. Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol. 2001;280(4):F562–73.

    CAS  PubMed  Google Scholar 

  90. Lopez-Nieto CE, et al. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J Biol Chem. 1997;272(10):6471–8.

    Article  CAS  PubMed  Google Scholar 

  91. Sekine T, et al. Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem. 1997;272(30):18526–9.

    Article  CAS  PubMed  Google Scholar 

  92. Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev. 2004;84(3):987–1049.

    Article  CAS  PubMed  Google Scholar 

  93. Burckhardt G, Wolff NA. Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol. 2000;278(6):F853–66.

    CAS  PubMed  Google Scholar 

  94. Enomoto A, Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2005;9(3):195–205.

    Article  CAS  PubMed  Google Scholar 

  95. DiBona GF. Neural mechanisms in body fluid homeostasis. Fed Proc. 1986;45(13):2871–7.

    CAS  PubMed  Google Scholar 

  96. Baum M, Quigley R. Inhibition of proximal convoluted tubule transport by dopamine. Kidney Int. 1998;54(5):1593–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Broer A, et al. The molecular basis of neutral aminoacidurias. Pflugers Arch. 2006;451(4):511–7.

    Article  PubMed  CAS  Google Scholar 

  98. Goodyer P. The molecular basis of cystinuria. Nephron Exp Nephrol. 2004;98(2):e45–9.

    Article  CAS  PubMed  Google Scholar 

  99. Schiavi SC, Moe OW. Phosphatonins: a new class of phosphate-regulating proteins. Curr Opin Nephrol Hypertens. 2002;11(4):423–30.

    Article  PubMed  Google Scholar 

  100. Gottschalk CW, Mylle M. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol. 1959;196(4):927–36.

    CAS  PubMed  Google Scholar 

  101. Sands JM, Layton HE. The physiology of urinary concentration: an update. Semin Nephrol. 2009;29(3):178–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bray GA, Preston AS. Effect of urea on urine concentration in the rat. J Clin Invest. 1961;40:1952–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zimmerhackl BL, Robertson CR, Jamison RL. The medullary microcirculation. Kidney Int. 1987;31(2):641–7.

    Article  CAS  PubMed  Google Scholar 

  104. Pannabecker TL, et al. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. Am J Physiol Renal Physiol. 2008;295(5):F1271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Capasso G, Unwin R, Giebisch G. Role of the loop of Henle in urinary acidification. Kidney Int Suppl. 1991;33:S33–5.

    CAS  PubMed  Google Scholar 

  106. Capasso G, et al. Bicarbonate transport along the loop of Henle. I. Microperfusion studies of load and inhibitor sensitivity. J Clin Invest. 1991;88(2):430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Karim Z, et al. Recent concepts concerning the renal handling of NH3/NH4+. J Nephrol. 2006;19 Suppl 9:S27–32.

    CAS  PubMed  Google Scholar 

  108. Quamme GA, Dirks JH. The physiology of renal magnesium handling. Ren Physiol. 1986;9(5):257–69.

    CAS  PubMed  Google Scholar 

  109. Sutton RA, Domrongkitchaiporn S. Abnormal renal magnesium handling. Miner Electrolyte Metab. 1993;19(4–5):232–40.

    CAS  PubMed  Google Scholar 

  110. Taugner R, et al. Gap junctional coupling between the JGA and the glomerular tuft. Cell Tissue Res. 1978;186(2):279–85.

    Article  CAS  PubMed  Google Scholar 

  111. Schnermann J. Juxtaglomerular cell complex in the regulation of renal salt excretion. Am J Physiol. 1998;274(2 Pt 2):R263–79.

    CAS  PubMed  Google Scholar 

  112. Levens NR, Peach MJ, Carey RM. Role of the intrarenal renin-angiotensin system in the control of renal function. Circ Res. 1981;48(2):157–67.

    Article  CAS  PubMed  Google Scholar 

  113. Good DW. Sodium-dependent bicarbonate absorption by cortical thick ascending limb of rat kidney. Am J Physiol. 1985;248(6 Pt 2):F821–9.

    CAS  PubMed  Google Scholar 

  114. Amirlak I, Dawson KP. Bartter syndrome: an overview. QJM. 2000;93(4):207–15.

    Article  CAS  PubMed  Google Scholar 

  115. de Groot T, Bindels RJ, Hoenderop JG. TRPV5: an ingeniously controlled calcium channel. Kidney Int. 2008;74(10):1241–6.

    Article  PubMed  CAS  Google Scholar 

  116. Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev. 2000;80(1):277–313.

    CAS  PubMed  Google Scholar 

  117. Wang WH, Schwab A, Giebisch G. Regulation of small-conductance K + channel in apical membrane of rat cortical collecting tubule. Am J Physiol. 1990;259(3 Pt 2):F494–502.

    CAS  PubMed  Google Scholar 

  118. Wade JB, et al. WNK1 kinase isoform switch regulates renal potassium excretion. Proc Natl Acad Sci U S A. 2006;103(22):8558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu Z, Wang HR, Huang CL. Regulation of ROMK channel and K + homeostasis by kidney-specific WNK1 kinase. J Biol Chem. 2009;284(18):12198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lu Z, MacKinnon R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K + channel. Nature. 1994;371(6494):243–6.

    Article  CAS  PubMed  Google Scholar 

  121. Sands JM, Knepper MA. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J Clin Invest. 1987;79(1):138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nielsen S, et al. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82(1):205–44.

    Article  CAS  PubMed  Google Scholar 

  123. Wade JB, Stetson DL, Lewis SA. ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci. 1981;372:106–17.

    Article  CAS  PubMed  Google Scholar 

  124. Smith CP. Mammalian urea transporters. Exp Physiol. 2009;94(2):180–5.

    Article  CAS  PubMed  Google Scholar 

  125. Teng-umnuay P, et al. Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J Am Soc Nephrol. 1996;7(2):260–74.

    CAS  PubMed  Google Scholar 

  126. Schwartz GJ, Barasch J, Al-Awqati Q. Plasticity of functional epithelial polarity. Nature. 1985;318(6044):368–71.

    Article  CAS  PubMed  Google Scholar 

  127. Al-Awqati Q. Plasticity in epithelial polarity of renal intercalated cells: targeting of the H(+)-ATPase and band 3. Am J Physiol. 1996;270(6 Pt 1):C1571–80.

    CAS  PubMed  Google Scholar 

  128. Bonegio R, Lieberthal W. Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens. 2002;11(3):301–8.

    Article  PubMed  Google Scholar 

  129. Kellenberger S, Gautschi I, Schild L. Mutations in the epithelial Na + channel ENaC outer pore disrupt amiloride block by increasing its dissociation rate. Mol Pharmacol. 2003;64(4):848–56.

    Article  CAS  PubMed  Google Scholar 

  130. Shimkets RA, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79(3):407–14.

    Article  CAS  PubMed  Google Scholar 

  131. Chang SS, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996;12(3):248–53.

    Article  CAS  PubMed  Google Scholar 

  132. Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007;18(10):2649–52.

    Article  PubMed  CAS  Google Scholar 

  133. Ko GJ, Rabb H, Hassoun HT. Kidney-lung crosstalk in the critically ill patient. Blood Purif. 2009;28(2):75–83.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wang GL, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Arany Z, et al. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A. 1996;93(23):12969–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Grigoryev DN, et al. The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol. 2008;19(3):547–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hoke TS, et al. Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J Am Soc Nephrol. 2007;18(1):155–64.

    Article  CAS  PubMed  Google Scholar 

  138. Li X, et al. Organ crosstalk: the role of the kidney. Curr Opin Crit Care. 2009;15(6):481–7.

    Article  PubMed  Google Scholar 

  139. Paladino JD, Hotchkiss JR, Rabb H. Acute kidney injury and lung dysfunction: a paradigm for remote organ effects of kidney disease? Microvasc Res. 2009;77(1):8–12.

    Article  CAS  PubMed  Google Scholar 

  140. Liu M, et al. Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol. 2008;19(7):1360–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003;14(6):1549–58.

    Article  CAS  PubMed  Google Scholar 

  142. Shimozawa N, et al. Diagnosis of Zellweger syndrome by rectal biopsy: immunoblot of peroxisomal beta-oxidation enzyme and activity of dihydroxyacetone phosphate acyltransferase in rectal mucosa. Clin Chim Acta. 1988;175(3):345–7.

    Article  CAS  PubMed  Google Scholar 

  143. Price JF, Goldstein SL. Cardiorenal syndrome in children with heart failure. Curr Heart Fail Rep. 2009;6(3):191–8.

    Article  PubMed  Google Scholar 

  144. Price JF, et al. Worsening renal function in children hospitalized with decompensated heart failure: evidence for a pediatric cardiorenal syndrome? Pediatr Crit Care Med. 2008;9(3):279–84.

    Article  PubMed  Google Scholar 

  145. Rabb H, et al. Acute renal failure leads to dysregulation of lung salt and water channels. Kidney Int. 2003;63(2):600–6.

    Article  CAS  PubMed  Google Scholar 

  146. Basu RK, Wheeler D. Effects of ischemic acute kidney injury on lung water balance: nephrogenic pulmonary edema? Pulm Med. 2011;2011:414253.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Liu KD. Impact of acute kidney injury on lung injury. Am J Physiol Lung Cell Mol Physiol. 2009;296(1):L1–2.

    Article  CAS  PubMed  Google Scholar 

  148. Singbartl K. Renal-pulmonary crosstalk. Contrib Nephrol. 2011;174:65–70.

    Article  PubMed  Google Scholar 

  149. Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  150. Langenberg C, et al. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006;69(11):1996–2002.

    Article  CAS  PubMed  Google Scholar 

  151. Guyton AC, Hall JE. Urine formation by the kidneys: I. Glomerular filtration, renal blood flow, and their control. In: Guyton AC, Hall JE, editors. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2011. p. 307–25.

    Google Scholar 

  152. Guyton AC, Hall JE. Regulation of extracellular fluid osmolarity and sodium concentration. In: Guyton AC, Hall JE, editors. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2011. p. 348–63.

    Google Scholar 

  153. Weichert J. Urinary system. On-line biological and bio-medical science encyclopedia. New York: McGraw-Hill Publishing; 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajit K. Basu MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Samraj, R.S., Basu, R.K. (2014). Applied Renal Physiology in the PICU. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6416-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6416-6_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6415-9

  • Online ISBN: 978-1-4471-6416-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics