Skip to main content

Tumor Suppressing Properties of Rodent Parvovirus NS1 Proteins and Their Derivatives

  • Chapter
  • First Online:
Anticancer Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 818))

Abstract

Cancer chemotherapy with monospecific agents is often hampered by the rapid development of tumor resistance to the drug used. Therefore, combination treatments aiming at several different targets are sought. Viral regulatory proteins, modified or not, appear ideal for this purpose because of their multimodal killing action against neoplastically transformed cells. The large nonstructural protein NS1of rodent parvoviruses is an excellent candidate for an anticancer agent, shown to interfere specifically with cancer cell growth and survival. The present review describes the structure, functions, and regulation of the multifunctional protein NS1, its specific interference with cell processes and cell protein activities, and what is known so far about the mechanisms underlying NS1 interference with cancer growth. It further outlines prospects for the development of new, multimodal cancer toxins and their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geletneky K, Hartkopf AD, Krempien R, Rommelaere J, Schlehofer JR (2010) Improved killing of human high-grade glioma cells by combining ionizing radiation with oncolytic parvovirus H-1 infection. J Biomed Biotechnol 2010:350748

    PubMed Central  PubMed  Google Scholar 

  2. Geletneky K, Hartkopf AD, Krempien R, Rommelaere J, Schlehofer JR (2010) Therapeutic implications of the enhanced short and long-term cytotoxicity of radiation treatment followed by oncolytic parvovirus H-1 infection in high-grade glioma cells. Bioeng Bugs 1:429–433

    PubMed Central  PubMed  Google Scholar 

  3. Geletneky K, Kiprianova I, Ayache A, Koch R, Herrero YCM, Deleu L et al (2010) Regression of advanced rat and human gliomas by local or systemic treatment with oncolytic parvovirus H-1 in rat models. Neuro Oncol 12:804–814

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Rommelaere J, Cornelis JJ (1991) Antineoplastic activity of parvoviruses. J Virol Methods 33:233–251

    CAS  PubMed  Google Scholar 

  5. Rommelaere J, Geletneky K, Angelova AL, Daeffler L, Dinsart C, Kiprianova I et al (2010) Oncolytic parvoviruses as cancer therapeutics. Cytokine Growth Factor Rev 21:185–195

    CAS  PubMed  Google Scholar 

  6. Geletneky K, Huesing J, Rommelaere J, Schlehofer JR, Leuchs B, Dahm M et al (2012) Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol. BMC Cancer 12:99

    PubMed Central  PubMed  Google Scholar 

  7. Cotmore SF, Tattersall P (1987) The autonomously replicating parvoviruses of vertebrates. Adv Virus Res 33:91–174

    CAS  PubMed  Google Scholar 

  8. Nüesch JPF (2006) Regulation of non-structural protein functions by differential synthesis, modification and trafficking. In: Kerr CSB, Linden ME, Parrish CR, Cotmore SF (eds) Parvoviruses. Edward Arnold, Ltd, London, pp 275–290

    Google Scholar 

  9. Corbau R, Salom N, Rommelaere J, Nuesch JP (1999) Phosphorylation of the viral nonstructural protein NS1 during MVMp infection of A9 cells. Virology 259:402–415

    CAS  PubMed  Google Scholar 

  10. Corbau R, Duverger V, Rommelaere J, Nuesch JP (2000) Regulation of MVM NS1 by protein kinase C: impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects. Virology 278:151–167

    CAS  PubMed  Google Scholar 

  11. Nuesch JP, Corbau R, Tattersall P, Rommelaere J (1998) Biochemical activities of minute virus of mice nonstructural protein NS1 are modulated In vitro by the phosphorylation state of the polypeptide. J Virol 72:8002–8012

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Nuesch JP, Christensen J, Rommelaere J (2001) Initiation of minute virus of mice DNA replication is regulated at the level of origin unwinding by atypical protein kinase C phosphorylation of NS1. J Virol 75:5730–5739

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Nuesch JP, Lachmann S, Corbau R, Rommelaere J (2003) Regulation of minute virus of mice NS1 replicative functions by atypical PKClambda in vivo. J Virol 77:433–442

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Dettwiler S, Rommelaere J, Nuesch JP (1999) DNA unwinding functions of minute virus of mice NS1 protein are modulated specifically by the lambda isoform of protein kinase C. J Virol 73:7410–7420

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Lachmann S, Rommeleare J, Nuesch JP (2003) Novel PKCeta is required to activate replicative functions of the major nonstructural protein NS1 of minute virus of mice. J Virol 77:8048–8060

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Raimondi C, Falasca M (2011) Targeting PDK1 in cancer. Curr Med Chem 18:2763–2769

    CAS  PubMed  Google Scholar 

  17. Nuesch JP, Lacroix J, Marchini A, Rommelaere J (2012) Molecular pathways: rodent parvoviruses–mechanisms of oncolysis and prospects for clinical cancer treatment. Clin Cancer Res 18:3516–3523

    PubMed  Google Scholar 

  18. Hristov G, Kramer M, Li J, El-Andaloussi N, Mora R, Daeffler L et al (2010) Through its nonstructural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species. J Virol 84:5909–5922

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Moehler M, Blechacz B, Weiskopf N, Zeidler M, Stremmel W, Rommelaere J et al (2001) Effective infection, apoptotic cell killing and gene transfer of human hepatoma cells but not primary hepatocytes by parvovirus H1 and derived vectors. Cancer Gene Ther 8:158–167

    CAS  PubMed  Google Scholar 

  20. Ran Z, Rayet B, Rommelaere J, Faisst S (1999) Parvovirus H-1-induced cell death: influence of intracellular NAD consumption on the regulation of necrosis and apoptosis. Virus Res 65:161–174

    CAS  PubMed  Google Scholar 

  21. Rayet B, Lopez-Guerrero JA, Rommelaere J, Dinsart C (1998) Induction of programmed cell death by parvovirus H-1 in U937 cells: connection with the tumor necrosis factor alpha signalling pathway. J Virol 72:8893–8903

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Sieben M, Herzer K, Zeidler M, Heinrichs V, Leuchs B, Schuler M et al (2008) Killing of p53-deficient hepatoma cells by parvovirus H-1 and chemotherapeutics requires promyelocytic leukemia protein. World J Gastroenterol 14:3819–3828

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Di Piazza M, Mader C, Geletneky K, Herrero YCM, Weber E, Schlehofer J et al (2007) Cytosolic activation of cathepsins mediates parvovirus H-1-induced killing of cisplatin and TRAIL-resistant glioma cells. J Virol 81:4186–4198

    PubMed Central  PubMed  Google Scholar 

  24. Bar S, Rommelaere J, Nuesch JP (2013) Vesicular transport of progeny parvovirus particles through ER and Golgi regulates maturation and cytolysis. PLoS Pathog 9:e1003605

    PubMed Central  PubMed  Google Scholar 

  25. Caillet-Fauquet P, Perros M, Brandenburger A, Spegelaere P, Rommelaere J (1990) Programmed killing of human cells by means of an inducible clone of parvoviral genes encoding non-structural proteins. EMBO J 9:2989–2995

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Mousset S, Ouadrhiri Y, Caillet-Fauquet P, Rommelaere J (1994) The cytotoxicity of the autonomous parvovirus minute virus of mice nonstructural proteins in FR3T3 rat cells depends on oncogene expression. J Virol 68:6446–6453

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Christensen J, Cotmore SF, Tattersall P (1997) Parvovirus initiation factor PIF: a novel human DNA-binding factor which coordinately recognizes two ACGT motifs. J Virol 71:5733–5741

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Christensen J, Cotmore SF, Tattersall P (1997) A novel cellular site-specific DNA-binding protein cooperates with the viral NS1 polypeptide to initiate parvovirus DNA replication. J Virol 71:1405–1416

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Cotmore SF, Nuesch JP, Tattersall P (1992) In vitro excision and replication of 5′ telomeres of minute virus of mice DNA from cloned palindromic concatemer junctions. Virology 190:365–377

    CAS  PubMed  Google Scholar 

  30. Cotmore SF, Nuesch JP, Tattersall P (1993) Asymmetric resolution of a parvovirus palindrome in vitro. J Virol 67:1579–1589

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Cotmore SF, Tattersall P (1994) An asymmetric nucleotide in the parvoviral 3′ hairpin directs segregation of a single active origin of DNA replication. EMBO J 13:4145–4152

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Cotmore SF, Christensen J, Tattersall P (2000) Two widely spaced initiator binding sites create an HMG1-dependent parvovirus rolling-hairpin replication origin. J Virol 74:1332–1341

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Legendre D, Rommelaere J (1992) Terminal regions of the NS-1 protein of the parvovirus minute virus of mice are involved in cytotoxicity and promoter trans inhibition. J Virol 66:5705–5713

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Li X, Rhode SL 3rd (1990) Mutation of lysine 405 to serine in the parvovirus H-1 NS1 abolishes its functions for viral DNA replication, late promoter trans activation, and cytotoxicity. J Virol 64:4654–4660

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Rhode SL 3rd (1985) trans-Activation of parvovirus P38 promoter by the 76 K noncapsid protein. J Virol 55:886–889

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Brandenburger A, Legendre D, Avalosse B, Rommelaere J (1990) NS-1 and NS-2 proteins may act synergistically in the cytopathogenicity of parvovirus MVMp. Virology 174:576–584

    CAS  PubMed  Google Scholar 

  37. Nuesch JP, Lachmann S, Rommelaere J (2005) Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice. Virology 331:159–174

    PubMed  Google Scholar 

  38. Daeffler L, Horlein R, Rommelaere J, Nuesch JP (2003) Modulation of minute virus of mice cytotoxic activities through site-directed mutagenesis within the NS coding region. J Virol 77:12466–12478

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Christensen J, Tattersall P (2002) Parvovirus initiator protein NS1 and RPA coordinate replication fork progression in a reconstituted DNA replication system. J Virol 76:6518–6531

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Cziepluch C, Kordes E, Poirey R, Grewenig A, Rommelaere J, Jauniaux JC (1998) Identification of a novel cellular TPR-containing protein, SGT, that interacts with the nonstructural protein NS1 of parvovirus H-1. J Virol 72:4149–4156

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Harris CE, Boden RA, Astell CR (1999) A novel heterogeneous nuclear ribonucleoprotein-like protein interacts with NS1 of the minute virus of mice. J Virol 73:72–80

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Krady JK, Ward DC (1995) Transcriptional activation by the parvoviral nonstructural protein NS-1 is mediated via a direct interaction with Sp1. Mol Cell Biol 15:524–533

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Lorson C, Pearson J, Burger L, Pintel DJ (1998) An Sp1-binding site and TATA element are sufficient to support full transactivation by proximally bound NS1 protein of minute virus of mice. Virology 240:326–337

    CAS  PubMed  Google Scholar 

  44. Nuesch JP, Rommelaere J (2006) NS1 interaction with CKII alpha: novel protein complex mediating parvovirus-induced cytotoxicity. J Virol 80:4729–4739

    PubMed Central  PubMed  Google Scholar 

  45. Nuesch JP, Rommelaere J (2007) A viral adaptor protein modulating casein kinase II activity induces cytopathic effects in permissive cells. Proc Natl Acad Sci U S A 104:12482–12487

    PubMed Central  PubMed  Google Scholar 

  46. Li J, Werner E, Hergenhahn M, Poirey R, Luo Z, Rommelaere J et al (2005) Expression profiling of human hepatoma cells reveals global repression of genes involved in cell proliferation, growth, and apoptosis upon infection with parvovirus H-1. J Virol 79:2274–2286

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Adeyemi RO, Landry S, Davis ME, Weitzman MD, Pintel DJ (2010) Parvovirus minute virus of mice induces a DNA damage response that facilitates viral replication. PLoS Pathog 6:e1001141

    PubMed Central  PubMed  Google Scholar 

  48. Bashir T, Rommelaere J, Cziepluch C (2001) In vivo accumulation of cyclin A and cellular replication factors in autonomous parvovirus minute virus of mice-associated replication bodies. J Virol 75:4394–4398

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Ruiz Z, Mihaylov IS, Cotmore SF, Tattersall P (2011) Recruitment of DNA replication and damage response proteins to viral replication centers during infection with NS2 mutants of Minute Virus of Mice (MVM). Virology 410:375–384

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Adeyemi RO, Pintel DJ (2012) Replication of minute virus of mice in murine cells is facilitated by virally induced depletion of p21. J Virol 86:8328–8332

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Op De Beeck A, Anouja F, Mousset S, Rommelaere J, Caillet-Fauquet P (1995) The nonstructural proteins of the autonomous parvovirus minute virus of mice interfere with the cell cycle, inducing accumulation in G2. Cell Growth Differ 6:781–787

    CAS  PubMed  Google Scholar 

  52. Op De Beeck A, Sobczak-Thepot J, Sirma H, Bourgain F, Brechot C, Caillet-Fauquet P (2001) NS1- and minute virus of mice-induced cell cycle arrest: involvement of p53 and p21(cip1). J Virol 75:11071–11078

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Op De Beeck A, Caillet-Fauquet P (1997) Viruses and the cell cycle. Prog Cell Cycle Res 3:1–19

    PubMed  Google Scholar 

  54. Doerig C, Hirt B, Beard P, Antonietti JP (1988) Minute virus of mice non-structural protein NS-1 is necessary and sufficient for trans-activation of the viral P39 promoter. J Gen Virol 69(Pt 10):2563–2573

    CAS  PubMed  Google Scholar 

  55. Doerig C, Hirt B, Antonietti JP, Beard P (1990) Nonstructural protein of parvoviruses B19 and minute virus of mice controls transcription. J Virol 64:387–396

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Nuesch JP, Cotmore SF, Tattersall P (1992) Expression of functional parvoviral NS1 from recombinant vaccinia virus: effects of mutations in the nucleotide-binding motif. Virology 191:406–416

    CAS  PubMed  Google Scholar 

  57. Best SM, Wolfinbarger JB, Bloom ME (2002) Caspase activation is required for permissive replication of Aleutian mink disease parvovirus in vitro. Virology 292:224–234

    CAS  PubMed  Google Scholar 

  58. Best SM, Bloom ME (2004) Caspase activation during virus infection: more than just the kiss of death? Virology 320:191–194

    CAS  PubMed  Google Scholar 

  59. Lachmann S, Bar S, Rommelaere J, Nuesch JP (2008) Parvovirus interference with intracellular signalling: mechanism of PKCeta activation in MVM-infected A9 fibroblasts. Cell Microbiol 10:755–769

    CAS  PubMed  Google Scholar 

  60. Salome N, van Hille B, Duponchel N, Meneguzzi G, Cuzin F, Rommelaere J et al (1990) Sensitization of transformed rat cells to parvovirus MVMp is restricted to specific oncogenes. Oncogene 5:123–130

    CAS  PubMed  Google Scholar 

  61. Bar S, Daeffler L, Rommelaere J, Nuesch JP (2008) Vesicular egress of non-enveloped lytic parvoviruses depends on gelsolin functioning. PLoS Pathog 4:e1000126

    PubMed Central  PubMed  Google Scholar 

  62. Nuesch JP, Bar S, Lachmann S, Rommelaere J (2009) Ezrin-radixin-moesin family proteins are involved in parvovirus replication and spreading. J Virol 83:5854–5863

    PubMed Central  PubMed  Google Scholar 

  63. Nuesch JP, Bar S, Rommelaere J (2008) Viral proteins killing tumor cells: new weapons in the fight against cancer. Cancer Biol Ther 7:1374–1376

    PubMed  Google Scholar 

  64. Christensen J, Cotmore SF, Tattersall P (1995) Minute virus of mice transcriptional activator protein NS1 binds directly to the transactivation region of the viral P38 promoter in a strictly ATP-dependent manner. J Virol 69:5422–5430

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Jindal HK, Yong CB, Wilson GM, Tam P, Astell CR (1994) Mutations in the NTP-binding motif of minute virus of mice (MVM) NS-1 protein uncouple ATPase and DNA helicase functions. J Biol Chem 269:3283–3289

    CAS  PubMed  Google Scholar 

  66. Mouw M, Pintel DJ (1998) Amino acids 16–275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA. Virology 251:123–131

    CAS  PubMed  Google Scholar 

  67. Nuesch JP, Tattersall P (1993) Nuclear targeting of the parvoviral replicator molecule NS1: evidence for self-association prior to nuclear transport. Virology 196:637–651

    CAS  PubMed  Google Scholar 

  68. Nuesch JP, Cotmore SF, Tattersall P (1995) Sequence motifs in the replicator protein of parvovirus MVM essential for nicking and covalent attachment to the viral origin: identification of the linking tyrosine. Virology 209:122–135

    CAS  PubMed  Google Scholar 

  69. Pujol A, Deleu L, Nuesch JP, Cziepluch C, Jauniaux JC, Rommelaere J (1997) Inhibition of parvovirus minute virus of mice replication by a peptide involved in the oligomerization of nonstructural protein NS1. J Virol 71:7393–7403

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Wilson GM, Jindal HK, Yeung DE, Chen W, Astell CR (1991) Expression of minute virus of mice major nonstructural protein in insect cells: purification and identification of ATPase and helicase activities. Virology 185:90–98

    CAS  PubMed  Google Scholar 

  71. Legendre D, Rommelaere J (1994) Targeting of promoters for trans activation by a carboxy-terminal domain of the NS-1 protein of the parvovirus minute virus of mice. J Virol 68:7974–7985

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Ilyina TV, Koonin EV (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20:3279–3285

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Gorbalenya AE, Koonin EV, Wolf YI (1990) A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262:145–148

    CAS  PubMed  Google Scholar 

  74. Hickman AB, Ronning DR, Kotin RM, Dyda F (2002) Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep. Mol Cell 10:327–337

    CAS  PubMed  Google Scholar 

  75. Tewary SK, Zhao H, Shen W, Qiu J, Tang L (2013) Structure of the NS1 protein N-terminal origin-recognition/nickase domain from the emerging human bocavirus. J Virol 87(21):11487–11493

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Cotmore SF, Christensen J, Nuesch JP, Tattersall P (1995) The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2–3. J Virol 69:1652–1660

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Cotmore SF, Tattersall P (1998) High-mobility group 1/2 proteins are essential for initiating rolling-circle-type DNA replication at a parvovirus hairpin origin. J Virol 72:8477–8484

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Mastrangelo IA, Hough PV, Wall JS, Dodson M, Dean FB, Hurwitz J (1989) ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication. Nature 338:658–662

    CAS  PubMed  Google Scholar 

  79. Gu ML, Chen FX, Rhode SL (1992) Parvovirus H-1 P38 promoter requires the trans-activation region (tar), an SP1 site, and a TATA box for full activity. Virology 187:10–17

    CAS  PubMed  Google Scholar 

  80. Gu ML, Rhode SL (1992) Trans-activation of H-1 parvovirus P38 promoter is correlated with increased binding of cellular protein(s) to the trans-activation responsive element (tar). Virology 190:116–123

    CAS  PubMed  Google Scholar 

  81. Nuesch JP, Dettwiler S, Corbau R, Rommelaere J (1998) Replicative functions of minute virus of mice NS1 protein are regulated in vitro by phosphorylation through protein kinase C. J Virol 72:9966–9977

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Li J, Bonifati S, Hristov G, Marttila T, Valmary-Degano S, Stanzel S et al (2013) Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas. EMBO Mol Med 5:1537–1555

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Bayascas JR (2008) Dissecting the role of the 3-phosphoinositide-dependent protein kinase-1 (PDK1) signalling pathways. Cell Cycle 7:2978–2982

    CAS  PubMed  Google Scholar 

  84. Raimondi C, Chikh A, Wheeler AP, Maffucci T, Falasca M (2012) A novel regulatory mechanism links PLCgamma1 to PDK1. J Cell Sci 125:3153–3163

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ et al (2009) AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell 16:21–32

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Wollmann G, Tattersall P, van den Pol AN (2005) Targeting human glioblastoma cells: comparison of nine viruses with oncolytic potential. J Virol 79:6005–6022

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Chakravarti A, Chakladar A, Delaney MA, Latham DE, Loeffler JS (2002) The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. Cancer Res 62:4307–4315

    CAS  PubMed  Google Scholar 

  88. Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422

    CAS  PubMed  Google Scholar 

  89. Hafsi S, Pezzino FM, Candido S, Ligresti G, Spandidos DA, Soua Z et al (2012) Gene alterations in the PI3K/PTEN/AKT pathway as a mechanism of drug-resistance (review). Int J Oncol 40:639–644

    CAS  PubMed  Google Scholar 

  90. Wilson JL, Hemann MT, Fraenkel E, Lauffenburger DA (2013) Integrated network analyses for functional genomic studies in cancer. Semin Cancer Biol 23:213–218

    CAS  PubMed  Google Scholar 

  91. Raykov Z, Grekova S, Galabov AS, Balboni G, Koch U, Aprahamian M et al (2007) Combined oncolytic and vaccination activities of parvovirus H-1 in a metastatic tumor model. Oncol Rep 17:1493–1499

    PubMed  Google Scholar 

  92. Raykov Z, Grekova S, Leuchs B, Aprahamian M, Rommelaere J (2008) Arming parvoviruses with CpG motifs to improve their oncosuppressive capacity. Int J Cancer 122:2880–2884

    CAS  PubMed  Google Scholar 

  93. Bhat R, Dempe S, Dinsart C, Rommelaere J (2011) Enhancement of NK cell antitumor responses using an oncolytic parvovirus. Int J Cancer 128:908–919

    CAS  PubMed  Google Scholar 

  94. Bhat R, Rommelaere J (2013) NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells. BMC Cancer 13:367

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Moehler MH, Zeidler M, Wilsberg V, Cornelis JJ, Woelfel T, Rommelaere J et al (2005) Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum Gene Ther 16:996–1005

    CAS  PubMed  Google Scholar 

  96. Dempe S, Stroh-Dege AY, Schwarz E, Rommelaere J, Dinsart C (2010) SMAD4: a predictive marker of PDAC cell permissiveness for oncolytic infection with parvovirus H-1PV. Int J Cancer 126:2914–2927

    CAS  PubMed  Google Scholar 

  97. Lavie M, Struyf S, Stroh-Dege A, Rommelaere J, Van Damme J, Dinsart C (2013) Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis. Virology 447:221–232

    CAS  PubMed  Google Scholar 

  98. Vollmers EM, Tattersall P (2013) Distinct host cell fates for human malignant melanoma targeted by oncolytic rodent parvoviruses. Virology 446:37–48

    CAS  PubMed  Google Scholar 

  99. Weiss N, Stroh-Dege A, Rommelaere J, Dinsart C, Salome N (2012) An in-frame deletion in the NS protein-coding sequence of parvovirus H-1PV efficiently stimulates export and infectivity of progeny virions. J Virol 86:7554–7564

    CAS  PubMed Central  PubMed  Google Scholar 

  100. El-Andaloussi N, Bonifati S, Kaufmann JK, Mailly L, Daeffler L, Deryckere F et al (2012) Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential. J Virol 86:10418–10431

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Bashir T, Horlein R, Rommelaere J, Willwand K (2000) Cyclin A activates the DNA polymerase delta -dependent elongation machinery in vitro: A parvovirus DNA replication model. Proc Natl Acad Sci U S A 97:5522–5527

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Deleu L, Pujol A, Faisst S, Rommelaere J (1999) Activation of promoter P4 of the autonomous parvovirus minute virus of mice at early S phase is required for productive infection. J Virol 73:3877–3885

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Breitbach CJ, Thorne SH, Bell JC, Kirn DH (2012) Targeted and armed oncolytic poxviruses for cancer: the lead example of JX-594. Curr Pharm Biotechnol 13:1768–1772

    CAS  PubMed  Google Scholar 

  104. Donnelly OG, Errington-Mais F, Prestwich R, Harrington K, Pandha H, Vile R et al (2012) Recent clinical experience with oncolytic viruses. Curr Pharm Biotechnol 13:1834–1841

    CAS  PubMed  Google Scholar 

  105. Nyberg KA et al (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–656

    CAS  PubMed  Google Scholar 

  106. Bhattacharya B et al (1990) Tropomyosins of human mammary epithelial cells: consistent defects of expression in mammary carcinoma cell lines. Cancer Res 50(7):2105–2112

    CAS  PubMed  Google Scholar 

  107. Fay N, Pante N (2013) The intermediate filament network protein, vimentin, is required for parvoviral infection. Virology 444(1–2):181–190

    CAS  PubMed  Google Scholar 

  108. Cornelis JJ et al (1988) Transformation of human fibroblasts by ionizing radiation, a chemical carcinogen, or simian virus 40 correlates with an increase in susceptibility to the autonomous parvoviruses H-1 virus and minute virus of mice. J Virol 62(5):1679–1686

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Grekova SP et al (2011) Interferon gamma improves the vaccination potential of oncolytic parvovirus H-1PV for the treatment of peritoneal carcinomatosis in pancreatic cancer. Cancer Biol Ther 12(10):888–895

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Bar S, Rommelaere J, Nüesch JPF. PKCeta/Rdx-driven phosphorylation of PDK1: a novel mechanism promoting survival of cancer cells and permissiveness for parvovirus-induced lysis. Cell Host Microbe, submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg P. F. Nüesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Nüesch, J.P.F., Rommelaere, J. (2014). Tumor Suppressing Properties of Rodent Parvovirus NS1 Proteins and Their Derivatives. In: Grimm, S. (eds) Anticancer Genes. Advances in Experimental Medicine and Biology, vol 818. Springer, London. https://doi.org/10.1007/978-1-4471-6458-6_5

Download citation

Publish with us

Policies and ethics