Skip to main content

Severity Function Describing the Hydrolysis of Xylan Using Carbonic Acid

  • Chapter
Twenty-Second Symposium on Biotechnology for Fuels and Chemicals

Part of the book series: ABAB Symposium ((ABAB))

Abstract

Beech wood derived xylan to hydrolyzed to predominantly xylose monomer units after exposure to hot, compressed liquid water saturated with carbon dioxide. Similar treatment without CO2 saturation resulted in only minor hydrolysis and a smaller fraction of monomers among the hydrolysis products. Severity of the hydrolysis reaction was correlated to reaction time, temperature, and carbon dioxide partial pressure and followed a function similar to those used to characterize mineral acid systems. Results from parallel hydrolysis experiments with an aqueous system and a very dilute sulfuric acid system allowed an approximation of the dissociation constant of carbonic acid in the temperature range of 170–230°C. Results suggest that carbonic acid may be a viable reagent for promoting hydrolysis without mineral acids, especially in the case of a bioprocessing plant that produces carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991), Science 251(15), 1318–1323.

    Article  CAS  Google Scholar 

  2. Torget, R. and Hsu, T. (1994), Appl. Biochem. Biotechnol. 45/46, 5–22.

    Article  Google Scholar 

  3. Torget, R., Hatzis, C., Hayward, T. K., Hsu, T., and Phillipidis, G. P. (1996), Appl. Biochem. Biotechnol. 57/58, 85–101.

    Article  CAS  Google Scholar 

  4. Lee, Y. Y., Wu, Z., and Torget, R. W. (2000), Bioresour. Technol. 71(1), 29–38.

    Article  CAS  Google Scholar 

  5. Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996), Appl. Biochem. Biotechnol. 57/58, 741–761.

    Article  CAS  Google Scholar 

  6. van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., and Lynd, L. R. (1996), Appl. Biochem. Biotechnol. 54/55, 157–170.

    Article  Google Scholar 

  7. Shevchenko, S. M., Chang, K., Robinson, J., and Saddler, J. N. (2000), Bioresour. Technol. 72, 207–211.

    Article  CAS  Google Scholar 

  8. Duranceau, S. J., Anderson, R. K., and Teegarden, R. D. (1999), J. Am. Water Works Assoc. 91(5), 85–96.

    CAS  Google Scholar 

  9. Minkova, V., Marinov, S. P., Zanzi, R., et al. (2000), Fuel Process. Technol. 62, 45–52.

    Article  CAS  Google Scholar 

  10. Puri, V. P. and Mamers, H. (1983), Biotechnol. Bioeng. 25, 3149–3161.

    Article  CAS  Google Scholar 

  11. Pavilon, S. J. (1990), US Patent no. 4952504.

    Google Scholar 

  12. Pavilon, S. J. (1992), US Patent no. 5135861.

    Google Scholar 

  13. Ellis, A. J. (1959), Am. J. Sci. 257, 217–234.

    Article  CAS  Google Scholar 

  14. Ellis, A. J. and Golding, R. M. (1963), Am. J. Sci. 261, 47–60.

    Article  CAS  Google Scholar 

  15. Ryzhenko, B. N. (1963), Geochemistry 2, 151–164.

    Google Scholar 

  16. Sweeton, F. H., Mesmer, R. E., and Baes, C. F. Jr. (1974), J. Solut. Chem. 3(3), 191–214.

    Article  CAS  Google Scholar 

  17. Overend, R. P. and Chornet, E. (1987), Phil. Trans. R. Soc. Lond. A321, 523–536.

    Article  Google Scholar 

  18. Chum, H. L., Johnson, D. K., Black, S. K., and Overend, R. P. (1990), Appl. Biochem. Biotechnol. 24/25, 1–14.

    Article  Google Scholar 

  19. Abatzoglou, N., Chornet, E., and Overend, R. P. (1992), Chem. Eng. Sci. 47(5), 1109–1122.

    Article  CAS  Google Scholar 

  20. Bouchard, J., Nguyen, T. S., Chornet, E., and Overend, R. P. (1991), Bioresour. Technol. 36, 121–131.

    Article  CAS  Google Scholar 

  21. Takenouchi, S. and Kennedy, G. C. (1964), Am. J. Sci. 262, 1055–1074.

    Article  CAS  Google Scholar 

  22. Zawasza, A. and Malesinska, B. Y. (1981), J. Chem. Eng. Data 26, 388–391.

    Article  Google Scholar 

  23. Read, A. J. (1975), J. Solut. Chem. 4(1), 53–70.

    Article  CAS  Google Scholar 

  24. Park, S. N., Kim, C. S., Kim, M. H., Lee, I.-J., and Kim, K. (1998), J. Chem. Soc. Faraday Trans. 94, 1421–1425.

    Article  Google Scholar 

  25. Bilal, B. A. and Müller, E. (1993), Z. Naturforsch. 48a, 1073–1080.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Walsum, G.P. (2001). Severity Function Describing the Hydrolysis of Xylan Using Carbonic Acid. In: Davison, B.H., McMillan, J., Finkelstein, M. (eds) Twenty-Second Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0217-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0217-2_27

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6667-9

  • Online ISBN: 978-1-4612-0217-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics