Skip to main content

The Keys to Quantum Secrets

  • Chapter
Ultimate Zero and One

Abstract

Modern schemes for exchanging secret messages, such as the one-time pad and public key procedures that we saw in Chapter 4, rely on the sender and receiver to possess certain “keys.” Such keys are simply large numbers that have been carefully constructed so as to have special mathematical properties. If the appropriate keys are known, then any encrypted messages are easily unscrambled. But without the keys it is computationally intractable, at least with any classical computer, to crack a coded message. Consequently, the integrity of these cryptosystems relies on the keys being kept secret.

In Nature's infinite book of secrecy

A little can I read.

—William Shakespeare

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 37.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 6

  • Bennett, C, and G. Brassard. “The Dawn of a New Era for Quantum Cryptography: The Experimental Prototype is Working!” SIGACT News, Vol. 20, Fall, pp. 78–82 (1989).

    Article  Google Scholar 

  • Bennett, C, Bessette, F., and G. Brassard. “Experimental Quantum Cryptography,” Lecture Notes in Computer Science, Vol. 473, Springer-Verlag, Berlin, pp. 253–265 (1991).

    Google Scholar 

  • Bennett, C, Bessette, F., Brassard, G., Salvail, L., and J. Smolin. “Experimental Quantum Cryptography,” Journal of Cryptology, Vol. 5, pp. 3–28 (1992).

    Article  MATH  Google Scholar 

  • Bennett, G, Brassard, G. and A. Ekert. “Quantum Cryptography,” Scientific American, October, pp. 50–57 (1992).

    Google Scholar 

  • Buttler, W., Hughes, R., Kwiat, P., Luther, G., Morgan, G., Nordholt, J., Peterson, G, and C. Simmons. “Free-Space Quantum Key Distribution,” Los Alamos preprint archive, http://xxx.lanl.gov/archive/quant-ph/9801006 (1998).

  • Buttler, W., Hughes, R., Kwiat, P., Lamoreaux, S., Luther, G., Morgan, G., Nord-holt, J., Peterson, G, and C. Simmons. “Practical Free-Space Quantum Key Distribution Over 1 Kilometer,” Los Alamos preprint archive, http://xxx.lanl.gov/archive/quant-ph/9805071 (1998).

  • Deutsch, D. “Quantum Communication Thwarts Eavesdroppers,” New Scientist, December 9, pp. 25–26 (1989).

    Google Scholar 

  • Ekert, A. “Quantum Cryptography Based on Bell’s Theorem,” Physical Review Letters, Vol. 67, pp. 661–663 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  • Ekert, A., Rarity, J., Tapster, P., and G. Palma. “Practical Quantum Cryptography Based on Two-Photon Interferometry,” Physical Review Letters, Vol. 69, 31 August, pp. 1293–1295 (1992).

    Article  Google Scholar 

  • Franson, J., and H. Lives. “Quantum Cryptography Using Optical Fibers,” Applied Optics, Vol. 33, pp. 2949–2954 (1995).

    Article  Google Scholar 

  • Hecht, E., and A. Zajac. Optics, Addison-Wesley, Reading, MA, p. 228 (1974).

    Google Scholar 

  • Hughes, R., Alde, D., Dyer, P., Luther, G., Morgan, G., and M. Schauer. “Quantum Cryptography,” Contemporary Physics, Vol. 36, pp. 149–163 (1995).

    Article  Google Scholar 

  • Hughes, R., James, D., Knill, E., Laflamme, R., and A. Petschek. “Decoherence Bounds on Quantum Computation with Trapped Ions,” Physical Review Letters, Vol. 77, pp. 3240–3243 (1996).

    Article  Google Scholar 

  • Hughes, R., Buttler, W., Kwiat, P., Luther, G., Morgan, G., Nordholt, J., Peterson, G, and G Simmons. “Secure Communications Using Quantum Cryptography,” Proceedings of SPIE, Vol. 3076, pp. 2–11 (1997).

    Article  Google Scholar 

  • Marand, G, and P. Townsend “Quantum Key Distribution Over Distances as Long as 30 km,” Optics Letters, 15 August, Vol. 20, No. 16, pp. 1695–1697 (1995).

    Article  Google Scholar 

  • Muller, A., Zbinden, H., and N. Gisin. “Quantum Cryptography Over 23 km in Installed Under-Lake Telecom Fibre,” Europhysics Letters, Vol. 33, pp. 335–339 (1996).

    Article  Google Scholar 

  • Townsend, P., Rarity, J., and P. Tapster. “Single Photon Interference in 10 km-Long Optical Fibre Interferometer,” Electronics Letters, Vol. 29, 1 April, pp. 634–635 (1993).

    Article  Google Scholar 

  • Townsend, P., Rarity, J., and P. Tapster. “Enhanced Single Photon Fringe Visibility in a 10 km-Long Prototype Quantum Cryptography Channel,” Electronics Letters, Vol. 29, July, pp. 1291–1293 (1993a)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Colin P. Williams and Scott H. Clearwater

About this chapter

Cite this chapter

Williams, C.P., Clearwater, S.H. (2000). The Keys to Quantum Secrets. In: Ultimate Zero and One. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0495-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0495-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94769-3

  • Online ISBN: 978-1-4612-0495-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics