Skip to main content

Influence of Lipids on the Bioaccumulation and Trophic Transfer of Organic Contaminants in Aquatic Organisms

  • Chapter
Lipids in Freshwater Ecosystems

Abstract

In aqueous systems, organisms are exposed to contaminants via multiple routes (Fig. 9.1). The extent of contaminant accumulation ultimately depends on the extent and mode of interaction with diverse contaminated media. The influence of lipids on contaminant uptake likewise varies according to the route by which the exposure takes place and the lipophilic character of the contaminant. Thus, it is necessary to clarify the environmental sources of contaminants for accumulation. The means by which contaminants, once accumulated, can be eliminated from an organism can also depend on organism lipid content. This elimination can be modified by the route, contaminant lipophilicity, and extent of contamination of the environmental compartment into which elimination occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arts, M.T.; Headley, J.V.; Peru, K.M. Persistence of herbicide residues in Gammarus lacustris (Crustacea: Amphipoda) in prairie wetlands. Environ. Toxicol. Chem. 15:481–488; 1996.

    CAS  Google Scholar 

  • Arts, M.T.; Ferguson, M.E.; Glozier, N.E.; Robarts, R.D.; Donald, D.B. Spatial and temporal variability in lipid dynamics of common amphipods: assessing the potential for uptake of lipophilic contaminants. Ecotoxicology 4:91–113; 1995.

    Article  CAS  Google Scholar 

  • Axelman, J.; Broman, D.; Naf, C.; Pettersen, H. Compound dependence of the relationship log K os , and log BCFL. Environ. Sci. Pollut. Res. 2:33–36; 1995.

    CAS  Google Scholar 

  • Banerjee, S.; Baughman, G.L. Bioconcentration factors and lipid solubility. Environ. Sci. Technol. 25:536–539; 1991.

    Article  CAS  Google Scholar 

  • Barron, M.G.,Bioconcentration. Environ. Sci. Technol. 24:1612–1618; 1990.

    Article  CAS  Google Scholar 

  • Bickel, M.H.,The role of adipose tissue in the distribution and storage of drugs. Prog. Drug Res. 28:273–303; 1994.

    Google Scholar 

  • Biddinger, G.R.; Gloss, S.P. The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic systems. Residue Rev. 91:103–145; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Bierman, V.J.,Equilibrium partitioning and biomagnification of organic chemicals in benthic animals. Environ. Sci. Technol. 24:1407–1412; 1990.

    Article  CAS  Google Scholar 

  • Bishop, C.A.; Brown, G.P.; Brooks, R.J.; Lean, D.R.S.; Carey, J.H. Organochlorine contaminant concentrations and their relationship to the body size and clutch characteristics of the female common snapping turtle in Lake Ontario, Canada. Arch. Environ. Contam. Toxicol. 27:82–87; 1994.

    CAS  Google Scholar 

  • Bishop, C.A.; Brooks, R.J.; Carey, J.H.; Ng, P.; Norstrom, R.J.; Lean, D.R.S.,The case for cause—effect linkage between environmental contamination and development in eggs of the common snapping turtle from Ontario, Canada. J. Toxicol. Environ. Health 33:521–547; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Bligh, E.G.; Dyer, W.J.,A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 39:911–917; 1959.

    Article  Google Scholar 

  • Brannon J.M.; Price, C.B.; Reiley, F.J., Jr., Pennington, J.C.; McFarland, V.A. Effects of sediment organic carbon on distribution of radiolabeled fluoranthene and PCBs among sediment, interstitial water and biota. Bull. Environ. Contam. Toxicol. 51:873–880; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Broman, D.; Näf, C.; Rolff, C.; Zebühr, R.; Fry, B.; Hobbie, J. Using ratios of stable nitrogen isotopes to estimate bioaccumulation and flux of polyclorinated dibenzop-dioxins (PCDDs) and dibenzofurans (PCDFs) in two food chains from the northern Baltic. Environ. Toxicol. Chem. 11:331–345; 1992.

    CAS  Google Scholar 

  • Bruger, J.; Gochfeld, M. Lead and cadmium accumulation in eggs and fledgling seabirds in the New York Bight. Environ. Toxicol. Chem. 12:261–267; 1993.

    Google Scholar 

  • Bruggerman, W.A.; Martron, L.B.J.M.; Koolman, D.; Hutzinger, O. Accumulation and elimination kinetics of di-, tri-, and tetrachlorobiphenyls by goldfish after dietary and aqueous exposure. Chemosphere 10:811–815; 1981.

    Article  Google Scholar 

  • Bruner, K.A.; Fisher, S.W.; Landrum, P.F. The role of the zebra mussel, Dreissena polymorpha, in contaminant cycling. I. The effect of body size and lipid content on the bioconcentration of PCBs and PAHs. J. Great Lakes Res. 20:725–734; 1994a.

    Article  CAS  Google Scholar 

  • Bruner, K.A.; Fisher, S.W.; Landrum, P.F. The role of the zebra mussel, Dreissena polymorpha, in contaminant cycling. II. Contaminant accumulation from ingested algal and suspended sediment particles and contaminant trophic transfer from zebra mussel feces to the benthic invertebrate, Gammarus,fasciatus. J. Great Lakes Res. 20:735–750; 1994b.

    Article  CAS  Google Scholar 

  • Burns, K.A.; Teal, J.M. The West Falmouth oil spill: hydrocarbons in the salt marsh ecosystem. Est. Coastal Mar. Sci. 8:349–360; 1979.

    CAS  Google Scholar 

  • Burrows, LG.; Whitton, B.A. Heavy metals in water, sediments and invertebrates from a metal contaminated river free of organic pollution. Hydrobiologia 106:263–273; 1983.

    Article  CAS  Google Scholar 

  • Chen, S.W.; Dzuik, P.J.; Francis, B.M. Effect of four environmental toxicants on plasma Ca and estradiol 17B and hepatic P450 in laying hens. Environ. Toxicol. Chem. 13:789795; 1994.

    Google Scholar 

  • Chiou, C.T.; Freed, V.H.; Schmedding, D.W.; Kohnert, R.L.,Partition coefficient and bioac-cumulation of selected organic chemicals. Environ. Sci. Technol. 11:475–478; 1977.

    Article  CAS  Google Scholar 

  • Clark, K.E.; Mackay, D.,Dietary uptake and biomagnification of four chlorinated hydrocar-bons by guppies. Environ. Toxicol. Chem. 10:1205–1217; 1991.

    Article  CAS  Google Scholar 

  • Connell, D.W.,Bioaccumulation behavior of persistent organic chemicals with aquatic organisms. Rev. Environ. Contam. Toxicol. 101:117–154; 1988.

    Article  Google Scholar 

  • Cravedi, J.P.; Tulliez, J.,Metabolism of n-alkanes and their incorporation into lipids in rainbow trout. Environ. Res. 39:180–187; 1986.

    Article  PubMed  CAS  Google Scholar 

  • de Boer, J. Chlorobiphenyls in bound and non-bound lipids of fishes: comparison of different extraction methods. Chemosphere 17:1803–1810; 1988.

    Article  Google Scholar 

  • DiPinto, L.M.; Coull, B.C.; Chandler, G.T.,Lethal and sublethal effects of sediment-associated PCB Arochlor 1254 on a meiobenthic copepod. Environ. Toxicol. Chem. 12:1909–1918; 1993.

    Article  CAS  Google Scholar 

  • DiToro, D.M.; Zarba, C.S.; Hansen, D.J.; Berry, W.J.; Swartz, R.C.; Cowan, C.E.; Pavlou, S.P.; Allen, H.E.; Thomas, N.A.; Paquin, P.R. Technical basis for establishing sediment quality criteria for nonionic organic chemicals by using equilibrium partitioning. Environ. Toxicol. Chem. 12:1541–1583; 1991.

    Google Scholar 

  • Ellis, G.S.; Huckins, J.N.; Rostad, C.E.; Schmitt, C.J.; Petty, J.D.; MacCarthy, P. Evaluation of lipid-containing semipermeable membrane devices for monitoring organochlorine contaminants in the Upper Mississippi River. Environ. Toxicol. Chem. 14:1875–1884; 1995.

    CAS  Google Scholar 

  • Ewald, G.,Role of lipids in the fate of organochlorine compounds in aquatic ecosystems.Doctoral dissertation, Department of Ecology, Lund University, Lund, Sweden; 1996.

    Google Scholar 

  • Ewald, G.; Larsson, P.,Partitioning of 14C-labelled 2,2’, 4,4’-tetrachlorobiphenyl between water and fish lipids. Environ. Toxicol. Chem. 13:1577–1580; 1994.

    CAS  Google Scholar 

  • Fisher, S.W.; Gossiaux, D.C.; Bruner, K.A.; Landrum, P.F. Investigations of the toxicokinetics of hydrophobic contaminants in the zebra mussel (Dreissena polymorpha). In: Nalepa, T.F.; Schloesser, D.W., eds. Zebra Mussels: Biology, Impacts and Control. Boca Raton, FL: CRC Press; 1993:p. 453–464.

    Google Scholar 

  • Folch, J.; Lees, M.; Cloane Stanley, G.H.,A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509; 1957.

    PubMed  CAS  Google Scholar 

  • Gardner, W.S.; Landrum, P.F.; Chandler, J.F. Lipid-partitioning and disposition of benzo(a)pyrene and hexachlrorbiphenyl in Lake Michigan, Pontoporeia hoyi. Environ. Toxicol. Chem. 10:35–46; 1990.

    Google Scholar 

  • Gardner, W.S.; Frez, W.A.; Cichocki, E.A.; Parrish, C.C. Micromethod for lipids in aquatic invertebrates. Limnol. Oceanogr. 30:1100–1105; 1985.

    Google Scholar 

  • Geyer, H.J.; Scheunert, I.; Bruggeman, R.; Matthies, M.; Steinberg, C.E.W.; Zitko, V.; Kettrup, A.; Garrison, W. The relevance of aquatic organisms lipid content to the toxicity of lipophilic chemicals: toxicity of lindane to different fish species. Ecotoxicol. Environ. Safety 28:53–70; 1994.

    Article  CAS  Google Scholar 

  • Geyer, H.J.; Scheunert, I.: Rapp, K.; Gebefugi, I.; Steinberg, C.; Kettrup, A.,The relevance of fat content in toxicity of lipophilic chemicals to terrestrial animals with special reference to dieldrin and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Ecotoxicol. Environ. Safety 26:45–60; 1993.

    Article  CAS  Google Scholar 

  • Gobas, F.A.P.C.; Mackay, D. Dynamics of hydrophobic organic chemical bioconcentration in fish. Environ. Toxicol. Chem. 6:495–504; 1987.

    CAS  Google Scholar 

  • Gobas, F.A.P.C.; Zhang, X.; Wells, R. Gastrointestinal magnification: the mechanism of biomagnification and food chain accumulation of organic chemicals. Environ. Sci. Technol. 27:2855–2864; 1993a.

    Article  CAS  Google Scholar 

  • Gobas, F.A.P.C.; McCorquodale, J.R.; Haffner, G.D.,Intestinal absorption and biomagnification of organochlorines. Environ. Toxicol. Chem. 12:567–577; 1993b.

    Article  CAS  Google Scholar 

  • Gobas, F.A.P.C.; McNeil, E.J.; Lovett-Doust, L.; Haffner, G.D. Bioconcentration of chlori-nated aromatic hydrocarbons in aquatic macrophytes. Environ. Sci. Technol. 25:924–929; 1991.

    Article  CAS  Google Scholar 

  • Gobas, F.A.P.C.; Clark, K.E.; Shiu, W.Y.; Mackay, D. Bioconcentration of polybrominated benzenes and biphenyls and related superhydrophobic chemicals in fish: role of bioavailability and fecal elimination. Environ. Toxicol. Chem. 8:231–247; 1989.

    CAS  Google Scholar 

  • Hákansson, H.; Sudlin, P.; Andersson, T.; Brunström, B.; Dencker, L.; Engwall, M.; Ewald, G.; Gilek, M.; Holm, G.; Honkassalo, S.; Idestam-Almquist, J.; Jonsson, P.; Kautsky, N.; Lundburg, G.; Lund-Kvernheim, A.; Martinsen, K.; Norrgren, L.; Pesonen, M.; Rundgren, M.; Sálberg, M.; Tarkpea, M.; Wesén, C.,In vivo and in vitro toxicity of fractionated fish lipids, with particular regard to their content of chlorinated organic compounds. Pharmacol. Toxicol. 69:344–345; 1991.

    Article  Google Scholar 

  • Hansen, L.G. Halogenated aromatic compounds. In: Hansen, L.G.; Shane, B.S., eds. Basic Environmental Toxicology. Ann Arbor, MI: CRC Press; 1994:p. 199–230.

    Google Scholar 

  • Harkey, G.A.; Landrum, P.F.; Kaline, S.J.,Comparison of whole sediment, elutriate, and porewater for use in assessing sediment-associated organic contaminants in bioaccumulation assays. Environ Toxicol. Chem. 13:1315–1329; 1994a.

    Article  CAS  Google Scholar 

  • Harkey, G.A.; Lydy, M.J.; Kukkonen, J.; Landrum, P.F. Feeding selectivity and assimila-tion of PAH and PCB in Diporeia spp. Environ. Toxicol. Chem. 13:1445–1455; 1994b.

    CAS  Google Scholar 

  • Harrison, H.L.; Loucks, O.L.; Mitchell, J.W.; Parkhurst, D.F.; Tracy, C.R.; Watts D.G.; Yannacone, V.J., Jr. System studies of DDT transport. Science 170:503–508; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Hawker, D.W.; Connell, D.W. Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol. Environ. Safety 11:184–197; 1986.

    Article  CAS  Google Scholar 

  • Heinz, G.H.,Selenium accumulation and loss in mallard eggs. Environ. Toxicol. Chem. 12:775–778; 1993.

    Article  CAS  Google Scholar 

  • Heinz, G.H.; Hoffamn, D.J.; Gold, L.G.,Impaired reproduction of mallards fed and organic form of selenium.,J. Wildl. Manage. 53:418–428; 1989.

    Article  Google Scholar 

  • Huckins, J.N.; Tubergen, M.W.; Manuweera, G.K. Semipermeable membrane devices containing model lipid: a new approach to monitoring and estimating their bioconcentration potential. Chemosphere 20:533–552; 1990a.

    Article  CAS  Google Scholar 

  • Huckins, J.N.; Tubergen, M.W.; Lebo, J.A.; Gale, R.W.; Schwartz, T.R. Polymeric film dialysis in organic solvent media for cleanup of organic contaminants. J. Assoc. Off. Anal. Chem. 73:290–293; 1990b.

    CAS  Google Scholar 

  • Hunn, J.B.; Allen, J.L. Movement of drugs across the gills of fishes. Annu. Rev. Pharmacol. 14:47–55; 1974.

    Article  CAS  Google Scholar 

  • Jarman, W.M.; Burns, S.A.; Chang, R.R.; Stephens, R.D.; Norstrom, R.J.; Simon, M.; Linthicum, J. Determination of PCDDs, PCDFs and PCBs in California peregrine falcons (Falco peregrinus) and their eggs. Environ. Toxicol. Chem. 12:105–114; 1993.

    CAS  Google Scholar 

  • Kaiser, K.L.E.; Vladmanis, I. Apparent octanol/water partition coefficients of pentachlorophenol as a function of pH. Can. J. Chem. 60:2104–2106; 1982.

    CAS  Google Scholar 

  • Kamp, J.D.; Neumann, H.G. Absorption of carcinogens into the thoracic duct lymph of the rat: aminostilbene derivatives and 3-methylchloanthrene. Xenobiotica 5:717–727; 1975. Kay, S.H. Cadmium in food webs. Residue Rev. 96:13–43; 1984.

    Google Scholar 

  • Kenega, E.E.,Correlation of concentration factors of chemicals in aquatic and terrestrial organism with their physical and chemical properties. Environ. Sci. Technol. 14:553–556; 1980.

    Article  Google Scholar 

  • Kuckuck, J.R.; Harvey, H.R.; Ostrom, P.H.; Ostrom, N.E.; Baker, J.E. Organochlorine dynamics in the pelagic food web of Lake Baikal. Environ. Toxicol. Chem. 15:13881400; 1996.

    Google Scholar 

  • Kucklick, J.R.; Bidelman, T.F.; McConnell, L.L.; Walla, M.D.; Ivanov, G.P. Organochlorines in the water and biota of Lake Baikal, Siberia. Environ. Sci. Technol. 28:31–37;1994.

    Article  CAS  Google Scholar 

  • Kukkonen, J.; Landrum, P.F. Distribution of organic carbon and organic xenobiotics among different particle-size fractions in sediments. Chemosphere 32:1063–1076; 1996.

    Article  CAS  Google Scholar 

  • Kukkonen, J.; Landrum, P.F. Effects of sediment-bound polydimethylsiloxane on the bioavailability and distribution of benzo(a)pyrene in lake sediment to Lumbriculus variegatus. Environ. Toxicol. Chem. 14:523–531; 1995.

    CAS  Google Scholar 

  • Laher, J.M.; Rigler, M.W.; Vetter, R.D.; Barrowman, J.A.; Patton, J.S.,Similar bioavailability and lymphatic transport of benzo(a)pyrene when administered to rats in different amounts of dietary fat. J. Lipid Res. 25:1337–1342; 1984.

    PubMed  CAS  Google Scholar 

  • Lake, J.L.; Rubenstein, N.I.; Lee, H.II; Lake, C.A.; Heltshe, J.; Pavignano, S.,Equilibrium partitioning and bioaccumulation of sediment-associated contaminants by infaunal organisms. Environ. Toxicol. Chem. 9:1095–1106; 1990.

    Article  CAS  Google Scholar 

  • Lal, B.; Singh, T.P. Impact of pesticides on lipid metabolism in the freshwater catfish, Clarias batrachus, during the vitellogenic phase of its annual reproductive cycle. Ecotoxicol. Environ. Safety 13:13–23; 1987.

    Article  CAS  Google Scholar 

  • Landrum, P.F. Toxicokinetics of organic xenobiotics in the amphipod, Pontoporeia hovi: role of physiological and environmental variables. Aquat. Toxicol. 12:245–271; 1988.

    CAS  Google Scholar 

  • Landrum, P.F.; Dupuis, W.S. Toxicity and toxicokinetics of pentachlorophenol and carbaryl to Pontoporeia hovi and Mvsis relicta. In: Landis, W.G.; Van der Schalie, W. H., eds. Aquatic Toxicology and Risk Assessment, 13th vol. ASTM STP 1096. Philadelphia: American Society for Testing and Materials; 1990:p. 278–289.

    Google Scholar 

  • Landrum, P.F.; Faust, W.R. The role of sediment composition on the bioavailability of laboratory-dosed sediment-associated contaminants to the amphipod, Diporeia spp. Chem. Speciat. Bioavail. 6:85–92; 1994.

    CAS  Google Scholar 

  • Landrum, P.F.; Faust, W.R. Effect of variation in sediment composition on the uptake rate coefficient for selected PCB and PAH congeners by the amphipod, Diporeia spp. In: Mayes, M.A.; Barron, M.G., eds. Aquatic Toxicology and Risk Assessment, vol. 14. ASTM STP 1124. Philadelphia: American Society for Testing and Materials; 1991:p. 263–279.

    Chapter  Google Scholar 

  • Landrum, P.F.; Robbins, J.A. Bioavailability of sediment associated contaminants: a review and simulation model. In: Baudo, R.; Giesy, J.P.; Muntau, H., eds. Sediments: Chemistry and Toxicity of In-Place Pollutants. Chelsea, MI: Lewis Publishers; 1990:p. 237–263.

    Google Scholar 

  • Landrum, P.F.; Dupuis, W.S.; Kukkonen, J. Toxicity and toxicokinetics of sediment-associated pyrene in Diporeia spp.: examination of equilibrium partitioning theory and residue effects for assessing hazard. Environ. Toxicol. Chem. 13:1769–1780; 1994.

    CAS  Google Scholar 

  • Landrum, P.F.; Lee, H.; Lydy, M.J. Toxicokinetics in aquatic systems: model comparisons and use in hazard assessment. Environ. Toxicol. Chem. 11:1709–1725; 1992.

    CAS  Google Scholar 

  • Landrum, P.F.; Eadie, B.J.; Faust, W.R. Toxicokinetics and toxicity of a mixture of sediment-associated polycyclic aromatic hydrocarbons to the amphipod Diporeia spp. Environ. Toxicol. Chem. 10:35–46; 1991.

    CAS  Google Scholar 

  • Lassiter, R.R.; Hallam, T.G. Survival of the fattest: Implications for acute effects of lipophilic chemicals on aquatic populations. Environ. Toxicol. Chem. 9:585–595; 1990.

    CAS  Google Scholar 

  • LeBlanc,G.A.,Trophic level differences in bioconcentration of chemicals: Implications in assessing environmental biomagnification. Environ. Sci. Technol. 29:154–160;1995.

    Article  CAS  Google Scholar 

  • Lee, H., II. Models, muddles and mud: predicting bioaccumulation of sediment associated pollutants. In: Burton, G.A., ed. Sediment Toxicity Assessment. Ann Arbor, MI: Lewis Publishers; 1992:p. 73–94.

    Google Scholar 

  • Leo, A.; Hansch, C.; Elkins, D.,Partition coefficients and their uses. Chem. Rev. 71:525–616; 1971.

    Article  CAS  Google Scholar 

  • Lien, G.J.; McKim, J.M. Predicting branchial and cutaneous uptake of 2,5,2’,5’-14tetrachlorobiphenyl in fathead minnows (Pimephales promelas) and Japanese medaka (Oryzias latipes): rate limiting factors. Aquat. Toxicol. 27:15–32; 1993.

    CAS  Google Scholar 

  • Lien, G.J.; Nichols, J.W.; McKim, J.M.; Gallinat, C.A. Modeling the accumulation of three waterborne chlorinated ethanes in fathead minnows (Pimephales promelas): a physiologically based approach. Environ. Toxicol. Chem. 13:1195–1205; 1994.

    CAS  Google Scholar 

  • Loganathan, B.; Kannan, K.; Watanabe, I.; Kawano, M.; Irvine, K.; Kumar, S.; Sikka, H. Isomer-specific determination and toxic evaluation of polychlorinated biphenyls and dioxins. Environ. Sci. Technol. 29:1832–1838; 1995.

    Article  CAS  Google Scholar 

  • Ma, L.; Taraschi, T.F.; Janes, N. Nuclear magnetic resonance partitioning studies of solute action in lipid membranes. Bull. Mag. Reson. 14:293–98; 1992.

    CAS  Google Scholar 

  • McCarty, L.S.; Mackay, D. Enhancing ecotoxicological modeling and assessment. Environ. Sci. Technol. 27:1719–1728; 1993.

    Article  Google Scholar 

  • Macek, K.J.; Petrocelli, S.R.; Sleight, B.H., III. Consideration in assessing the potential for and significance of, biomagnification of chemical residues in aquatic foodchains. In: McFarland, V.A. Activity-based evaluation of potential bioaccumulation from sediments. In: Montgomery, R.L.; Leach, J.W., eds. Dredging and Dredged Material Disposal Proceedings of the Conference Dredging `84. New York: American Society of Civil Engineering; 1984:p. 461–466.

    Google Scholar 

  • McFarland, V.A.; Clark, J.U. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis. Environ. Health Perspect. 81:225–239; 1989.

    Article  CAS  Google Scholar 

  • Mackay, D. Multimedia Environmental Models: The Fugacity Approach. Chelsea, MI: Lewis Publishers; 1991.

    Google Scholar 

  • Mackay, D. Correlation of bioconcentration factors. Environ. Sci. Technol. 16:274–278; 1982.

    Article  CAS  Google Scholar 

  • Marking L.L.; Kimerle, R. A., eds. Aquatic Toxicology. ASTM STP 667. Philadelphia: American Society for Testing and Materials; 1979:p. 251–268.

    Book  Google Scholar 

  • Mommen, T.P.; Walsh, P. J.;Vitellogenesis and oocyte assembly. Vol. 11. In: Hoar, W.S.; Randall, D. J., eds. Fish Physiology. New York: Academic Press; 1988:p. 347–406.

    Google Scholar 

  • Moriarty, F. Exposure and residues. In: Moriarty, F., ed., Organochlorine Insecticides: Persistent Organic Pollutants. New York: Academic Press; 1975:p. 29–72.

    Google Scholar 

  • Muir, D.C.G.; Yarechewski, G.R.B. Dietary accumulation of four chlorinated dioxin congeners by rainbow trout and fathead minnows. Environ. Toxicol. Chem. 7:227–235; 1988.

    CAS  Google Scholar 

  • Mullins, L.J.,Some physical mechanisms in narcosis. Chem. Rev. 54:289–323; 1954.

    Article  CAS  Google Scholar 

  • Neely, W.B.; Branson, D.R.; Blau, G.E. Partition coefficient measure bioconcentration potential of organic chemicals in fish. Environ. Sci. Technol. 8:1113–1115; 1974.

    Article  CAS  Google Scholar 

  • Nichols, J.W.; McKim, J.M.; Lien, G.J.; Hoffman, A.D.; Bretelsen, S.L. Physiologically-based toxicokinetic modeling of three waterborne chloroethanes in rainbow trout (On-corhynchus mykiss). Toxicol. Appl. Pharmacol. 110:374–389; 1991.

    CAS  Google Scholar 

  • Nichols, J.W.; McKim, J.M.; Anderson, M.E.; Gargas, H.J.; Clewell, H.J., III; Erickson, R.J.,A physiologically-based toxicokinetic model for the uptake and disposition of waterborne organic chemicals in fish. Toxicol. Appl. Pharmacol. 106:433–447; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Opperhuizen, A.; Damen, H.W.J.; Asyee, G.M.; Van der Steen, J.M.D.; Hutzinger, O. Uptake and elimination by fish of polydimethylsiloxanes (silicones) after dietary and aqueous exposure. Toxicol. Environ. Chem. 13:265–285; 1987.

    CAS  Google Scholar 

  • Opperhuizen, A.; Velde, E.W.; Gobas, F.A.P.C.; Liem, D.A.K.; Van der Steen, J.M.D.; Hutzinger, O. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14:1871–1896; 1985.

    Article  CAS  Google Scholar 

  • Pawlisz, A.V.; Peters, R.H. A radioactive tracer technique for the study of lethal body burdens of narcotic organic chemicals in Daphnia magna. Environ. Sci. Technol. 27:2795–2800; 1993a.

    Article  CAS  Google Scholar 

  • Pawlisz, A.V.; Peters, R.H. A test of the equipotency of internal burdens of nine narcotic chemicals using Daphnia magna. Environ. Sci. Technol. 27:2801–2806; 1993b.

    Article  CAS  Google Scholar 

  • Prest, H.F.; Jarman, W.M.; Burns, S.A.; Weismüller, T.; Martin, M.; Huckins, J.N. Passive water sampling via semipermeable membrane devices (SPMDS) in concert with bivalves in the Sacramento/San Joaquin river delta. Chemosphere 25:1811–1823; 1992.

    Article  CAS  Google Scholar 

  • Randall, R.C.; Lee, H., II; Ozretich, R.J.; Lake, J.L.; Purell, R.J. Evaluation of selected lipid methods for normalizing pollutant bioaccumulation. Environ. Toxicol. Chem. 10:1431–1436; 1991.

    CAS  Google Scholar 

  • Rasmussen, J.B.; Rowan, D.J.; Lean, D.R.S.; Carey, J. H. Food chain structure in Ontario lakes determines PCB levels in lake trout (Salvelinus namaycush) and other pelagic fish. Can. J. Fish Aquat. Sci. 47:2030–2038; 1990.

    Article  Google Scholar 

  • Rees, D.E.; Mandelstam, P.; Lowry, J.Q.; Lipscomb, L.N.,A study of the mechanism of intestinal absorption of benzo(a)pyrene. Biochim. Biophys. Acta 225:96–107; 1971.

    CAS  Google Scholar 

  • Reynoldson, T.B.,Interactions between sediment contaminants and benthic organisms. Hydrobiology 149:53–66; 1987.

    Article  CAS  Google Scholar 

  • Rowan, D.J.; Rasmussen, J.B. Why don’t Great Lakes fish reflect environmental con centrations of organic contaminants? An analysis of between-lake variability in the ecological partitioning of PCBs and DDT. J. Great Lakes Res. 18:724–741; 1992.

    Article  CAS  Google Scholar 

  • Rubenstein, N.I.; Gilliam, W.T.; Gregory, N.R. Dietary accumulation of PCBs from a contaminated sediment source by a demersal fish (Leiostomus xanthurus). Aquat. Toxicol. 5:331–342; 1984.

    Google Scholar 

  • Russell, R.W.; Lazar, R.; Haffner, G.D. Biomagnification of organochlorines in Lake Erie white bass. Environ. Toxicol. Chem. 14:719–724; 1995.

    CAS  Google Scholar 

  • Saito, S.; Tateno, C.; Tanoue, A.; Matsuda, T. Electron microscope autoradiographic examination of uptake behavior of lipophilic chemicals into fish gill. Ecotoxicol. Environ. Safety 19:184–191; 1990.

    Article  CAS  Google Scholar 

  • Schneider, R. Polychlorinated biphenyls (PCBs) in cod tissues from the western Baltic: significance of equilibrium partitioning and lipid composition in the bioaccumulation of lipophilic pollutants in gill-breathing animals. Meeresforsch. 29:69–79; 1981.

    Google Scholar 

  • Schultz, I.R.; Hayton, W.L.,Body size and the toxicokinetics of trifluralin in rainbow trout. Toxicol. Appl. Pharmacol. 129:138–145; 1994.

    Article  CAS  Google Scholar 

  • Serafin, J.A. Avian species differences in intestinal absorption of xenobiotics (PCBs, Dieldrin, Hg2). Comp. Biochem. Physiol. 78:491–496; 1984.

    CAS  Google Scholar 

  • Shaw, G.R.; Connell, D.W. Factors controlling bioaccumulation in food chains. In: Waid, J.S., ed. PCBs and the Environment. vol. I. Boca Raton, FL: CRC Press; 1986:p. 135–141.

    Google Scholar 

  • Shaw, G.R.; Connell, D.W. Physicochemical properties controlling polychlorinated biphenyl (PCB) concentrations in aquatic organisms. Environ. Sci. Technol. 18:18–23: 1984.

    Article  CAS  Google Scholar 

  • Sijm, D.T.H.M.; Seinen, W.; Opperhuizen, A. Life-cycle biomagnification study in fish. Environ. Sci. Technol. 26:2162–2174; 1992.

    Article  CAS  Google Scholar 

  • Södergren, A.,Solvent-filled dialysis membranes simulate uptake of pollutants by aquatic organisms. Environ. Sci. Technol. 21:855–863; 1987.

    Article  Google Scholar 

  • Södergren, A.; Okla, L.,Simulation of interfacial mechanisms with dialysis membranes to study uptake and elimination of persistent pollutants in aquatic organisms. Verh. Int. Verein. Limnol. 23:1633–1638; 1988.

    Google Scholar 

  • Stange, K.; Swackhamer, D.L. Factors affecting phytoplankton species-specific differences in accumulation of 40 polychlorinated biphenyls (PCBs). Environ. Toxicol. Chem. 13:1849–1860; 1994.

    CAS  Google Scholar 

  • Stehly, G.R.; Hayton, W.L. Effect of pH on the accumulation kinetics of pentachlorophenol in goldfish. Arch. Environ. Contam. Toxicol. 19:464–470; 1990.

    CAS  Google Scholar 

  • Struger, J.; Elliot, J.E.; Bishop, C.A.; Obbard, M.E.; Norstrom, R.J.; Weseloh, D.V.; Simon, M.; Ng, P. Environmental contaminants of the common snapping turtle from the Great Lakes-St. Lawrence River basin of Ontario, Canada (1981–1984). J. Great Lakes Res. 19:681–694; 1993.

    Article  CAS  Google Scholar 

  • Suedel, B.C.; Boraczek, J.A.; Peddicord, R.K.; Clifford, P.A.; Dillon, T.M.,Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev. Environ. Contam. Toxicol. 136:21–84; 1994.

    Article  CAS  Google Scholar 

  • Swackhamer, D.L.; Hites, R.A.,Occurrence and bioaccumulation of organochlorine compounds in fishes from Siskiwit Lake, Isle Royal, Lake Superior. Environ. Sci. Technol. 22:543–548; 1988.

    Article  CAS  Google Scholar 

  • Swartz, R.C.; Lee, H., II. Biological processes affecting distribution of pollutants in marine sediments. Part I. Accumulation, trophic transfer, biodegradation and migration. In: Baker, R.A., ed. Contaminants and Sediments. Ann Arbor, MI: Ann Arbor Science Publishers; 1980:p. 534–563.

    Google Scholar 

  • Thomann, R.V.Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ. Sci. Technol. 23:699–707; 1989.

    Article  CAS  Google Scholar 

  • Thomann, R.V.; Connolly, J.P. Model of PCB in the Lake Michigan lake trout food chain. Environ. Sci. Technol. 18:65–71; 1984.

    Article  CAS  Google Scholar 

  • Tillitt, D.E.; Ankley, G.T.; Giesy, J.P.; Ludwig, J.P.; Kurita-Matsuba, H.; Weseloh, D.V.; Ross, P.S.; Bishop, C.A.; Sileo, L.; Stromborg, K.L.; Larson, J.; Kubiak, T.J. Polychlorinated biphenyl residues and egg mortality in double-crested cormorants from the Great Lakes. Environ. Toxicol. Chem. 11:1281–1288; 1992.

    Article  CAS  Google Scholar 

  • Trust, K.A.; Fairbrother, A.; Hooper, M.J.Effects of 2,3,7,8-tetrachlorodibenz(a)anthracene on immune function and mixed function oxidase in the European starling. Environ. Toxicol. Chem. 13:821–830; 1994.

    CAS  Google Scholar 

  • Tulasi, S.J.; Reddy, P.U.M.; Ramana Rao, J. V. Accumulation of lead and effects on total lipids and lipid-derivatives in the freshwater fish Anabas testudineus (Bloch). Ecotoxicol. Environ. Safety 23:33–38; 1992.

    Article  CAS  Google Scholar 

  • van den Berg, M.E.J.; Craane, B.L.H.J.; Sinnige, T.; van Mourik, S.; Dirksen, S.; Boudewijn, T.; van der Gaag, M.; Lutke-Schipholt, I.J.; Spenkelink, B.; Brouwer, A. Biochemical and toxic effects of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) in the cormorant (Phalacrocorax carbo) after in ovo exposure. Environ. Toxicol. Chem. 13:803–816; 1994.

    Google Scholar 

  • van den Heuvel, M.R.; McCarty, L.S.; Lanno, R.P.; Hickie, B.E.; Dixon, D.G. Effect of total body lipid on the toxicity and toxicokinetics of pentachlorophenol in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 20:235–252; 1991.

    Google Scholar 

  • van der Oost, R.; Heida, H.; Opperhuizen, A.Polychlorinated biphenyl congeners in sediments, plankton, mollusks, crustaceans, and eel in a freshwater lake: Implications of using reference chemicals and indicator organisms in bioaccumulation studies. Arch. Environ. Contam. Toxicol. 17:721–729; 1988.

    Article  PubMed  Google Scholar 

  • Vanderzaden, M.J.; Rasmussen, J.B. A trophic position model of pelagic food webs-impact on contaminant bioaccumulation in lake trout. Ecol. Monogr. 66:451–477; 1996.

    Article  Google Scholar 

  • van Wezel, A.P.; Opperhuizen, A. Narcosis due to environmental pollutants in aquatic organisms: residue-based toxicity, mechanisms and membrane burdens. Crit. Rev. Toxicol. 25:255–279; 1995.

    Article  Google Scholar 

  • van Wezel, A.P.; de Vries, D. A.M.; Kostense, S.; Sijm, D.T. H.M.; Opperhuizen, A. Intraspecies variation in lethal body burdens of narcotic compounds. Aquatic Toxicol. 33:325–342; 1995.

    Article  Google Scholar 

  • Veith, G.D.; Macek, K.J.; Petrocelli, S.R.; Carroll, J. An evaluation of using partition coefficients and water solubility to estimates bioconcentration factors for organic chemicals in fish. In: Eaton, J.G.; Parrish, P.R.; Hendricks, A. C., eds. Aquatic Toxicolgy. ASTM STP 707. American Society for Testing and Materials; 1980:p. 116–129.

    Google Scholar 

  • Veith, G.D.; DeFoe, D.L.; Bergstedt, B.V.Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish. Res. Bd. Can. 36:1040–1048; 1979.

    Article  CAS  Google Scholar 

  • Vetter, R.D.; Carey, M.C.; Patton, J.S.Co-assimilation of dietary fat and benzo(a)pyrene in the small intestine; an absorption model using killifish. J. Lipid Res. 26:428–434; 1985.

    PubMed  CAS  Google Scholar 

  • Walter, A.; Gutknecht, J. Permeability of small nonelectrolytes through lipid bilayer mem-branes. J. Membrane Biol. 90:207–217; 1986.

    Article  Google Scholar 

  • Westhall, J.C.Influence of pH and ionic strength on the aqueous-nonaqueous distribution of chlorinated phenols. Environ. Sci. Technol. 19:193–198; 1985.

    Article  Google Scholar 

  • Zitko, V. Metabolism and distribution by aquatic animals. In: Hutzinger, O., ed. The Handbook of Environmental Chemistry. vol. 2, part A. Berlin: Springer; 1980:p. 221–229.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Landrum, P.F., Fisher, S.W. (1999). Influence of Lipids on the Bioaccumulation and Trophic Transfer of Organic Contaminants in Aquatic Organisms. In: Arts, M.T., Wainman, B.C. (eds) Lipids in Freshwater Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0547-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0547-0_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6813-0

  • Online ISBN: 978-1-4612-0547-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics