Skip to main content

Postlude. A Universal Knot Invariant

  • Chapter
Quantum Groups

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 155))

Abstract

In Section 1 we present the concept of a knot invariant of finite type and prove that all quantum group invariants are of finite type. Then we con-struct a universal knot invariant Z(K) of finite type, with values in a com-mutative algebra built on pairs of points on a circle. We also show that the quantum group invariants of XVII.3 can be recovered from Z(K) in a sim-ple combinatorial way. The proof of this fact, as well as the construction of Z(K), use the formalism of the KZ-equations and Drinfeld’s results stated in XIX.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Abe. Hopf Algebras. Cambridge University Press, Cam-bridge, 1980.

    Google Scholar 

  2. D. Altschuler and A. Coste. Quasi-quantum groups, knots, three-manifolds, and topological field theory. Comm. Math. Phys. 150 (1992), 83–107.

    Article  MathSciNet  MATH  Google Scholar 

  3. C.R. Adams. On the linear ordinary q-difference equation. Ann. of Math. (2) 30 (1929), 195–205.

    Article  MATH  Google Scholar 

  4. J.F. Adams. On the cobar construction. Proc. Nat. Acad. Sci. USA 42 (1956), 409–412.

    Article  MATH  Google Scholar 

  5. J.W. Alexander. A lemma on systems of knotted curves. Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 93–95.

    Article  Google Scholar 

  6. J.W. Alexander. Topological invariants of knots and links. Trans. Amer. Math. Soc. 30 (1928), 275–306.

    Article  MathSciNet  MATH  Google Scholar 

  7. G.E. Andrews. The Theory of Partitions, volume 2 of Ency-clopedia of Mathematics and its Applications. Addison Wesley Publ. Co, Reading, MA, 1976.

    Google Scholar 

  8. K. Aomoto. Fonctions hyperlogarithmes et groupes de mono-dromie unipotents. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), 149–156.

    MathSciNet  MATH  Google Scholar 

  9. E. Artin. Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg 4 (1925), 47–72.

    Article  MATH  Google Scholar 

  10. E. Artin. Theory of braids. Ann. of Math. (2) 48 (1947), 101–126.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Artin, W. Schelters, and J. Tate. Quantum deformations of GLn. Coram. Pure Appl. Math. 44 (1991), 879–895.

    MATH  Google Scholar 

  12. R.J. Baxter. Partition function for the eight-vertex lattice model. Ann. Physics 70 (1972), 193–228.

    Article  MathSciNet  MATH  Google Scholar 

  13. R.J. Baxter. Exactly Solved Models in Statistical Mechanics. Academic Press, London, 1982.

    Google Scholar 

  14. J. Bénabou. Catégories avec multiplication. C. R. Acad. Sci. Paris Sér. I Math. 256 (1963), 1887–1890.

    MATH  Google Scholar 

  15. J. Bénabou. Algèbre élémentaire dans les catégories avec multiplication. C. R. Acad. Sci. Paris Sér. I Math. 258 (1964), 771–774.

    MATH  Google Scholar 

  16. J. Birman. Braids, Links and Mapping Class Groups, volume 82 of Ann. of Math. Stud. Princeton University Press, Princeton, NJ, 1974.

    Google Scholar 

  17. J. Birman. New points of view in knot theory. Bull. Amer. Math. Soc. 28 (1993), 253–287.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Birman and X.S. Lin. Knot polynomials and Vassiliev’s invariants. Invent. Math. 111 (1993), 225–270.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Bar-Natan. On the Vassiliev knot invariants. Harvard University, 1992. Topology, to appear.

    Google Scholar 

  20. N. Bourbaki. Groupes et Algèbres de Lie. Hermann, Paris, 1960.

    MATH  Google Scholar 

  21. N. Bourbaki. Algèbre Commutative. Hermann, Paris, 1961.

    Google Scholar 

  22. N. Bourbaki. Algèbre, Chap. 1–3. Hermann, Paris, 1970.

    Google Scholar 

  23. W. Burau. Über Zopfgruppen und gleichsinnig verdrillte Verkettungen. Abh. Math. Sem. Univ. Hamburg 11 (1936), 179–186.

    Article  Google Scholar 

  24. G. Burde and H. Zieschang. Knots. W. de Gruyter, Berlin, 1985.

    Google Scholar 

  25. P. Cartier. Cohomologie des coalgèbres (Exposé 5). In Séminaire Sophus Lie, 1955–56}. Faculté des Sciences de Paris, Paris, 1957.

    Google Scholar 

  26. P. Cartier. Construction combinatoire des invariants de Vassiliev-Kontsevich des nceuds. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 1205–1210.

    MathSciNet  MATH  Google Scholar 

  27. C. Chevalley and S. Eilenberg. Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63 (1948), 85–124.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Cartan and S. Eilenberg. Homological Algebra. Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  29. K.T. Chen. Formal differential equations. Ann. of Math. (2) 73 (1961), 110–133.

    Article  MathSciNet  MATH  Google Scholar 

  30. K.T. Chen. Iterated integrals of differential forms and loop space homology. Ann. of Math. (2) 97 (1973), 217–246.

    Article  MathSciNet  MATH  Google Scholar 

  31. K.T. Chen. Connections, holonomy and path space homology. In Differential Geometry, Part I, volume 27 of Proc. Sympos. Pure Math., pages 39–52. Amer. Math. Soc, Providence, RI, 1975.

    Google Scholar 

  32. K.T. Chen. Extensions of C∞ function algebra by integrals and Malcev completion of π1 . Adv. Math. 23 (1977}), 181–

    Article  MATH  Google Scholar 

  33. K.T. Chen. Iterated path integrals. Bull. Amer. Math. Soc. 83 (1977), 831–879.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Cigler. Operatormethoden für q-Identitäten. Monatsh. Math. 88 (1979), 87–105. MR 81h:05009.

    Article  MathSciNet  MATH  Google Scholar 

  35. P.M. Cohn. Free Rings and their Relations, volume 2 of Lon-don Math. Soc. Monographs. Academic Press, London, New York, 1971.

    Google Scholar 

  36. C. de Concini and V.G. Kac. Representations of quantum groups at roots of 1. In Operator Algebras, Unitary Repre-sentations, Enveloping Algebras, and Invariant Theory (Paris, 1989), volume 92 of Progr. Math., pages 471–506. Birkhäuser, Boston, 1990. MR 92g:17012.

    Google Scholar 

  37. C. de Concini, V.G. Kac, and C. Procesi. Quantum coadjoint orbit. J. Amer. Math. Soc. 5 (1992), 151–189. MR 93f: 17020.

    Article  MathSciNet  MATH  Google Scholar 

  38. J.H. Conway. An enumeration of knots and links, and some of their algebraic properties. In Computational Problems in Abstract Algebra, pages 329–358. Pergamon Press, New York, 1970.

    Google Scholar 

  39. C.W. Curtis. A note on noncommutative polynomials. Proc. Amer. Math. Soc. 3 (1952), 965–969.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Dehn. Die beiden Kleeblattschlingen. Math. Ann. 75 (1914), 402–413.

    Article  MathSciNet  Google Scholar 

  41. P. Deligne. Catégories tannakiennes. In The Grothendieck Festschrift, vol. II, volume 87 of Progr. Math., pages 111–195. Birkhäuser, Boston, 1990. MR 92d:14002.

    Google Scholar 

  42. M. Demazure and P. Gabriel. Groupes Algébriques. NorthHolland Publ. Co, Amsterdam, 1970.

    Google Scholar 

  43. J. Dixmier. Algèbres Enveloppantes. Bordas (GauthierVillars), Paris, 1974. English transl.: Enveloping Algebras, North-Holland Publ. Co, Amsterdam, 1977.

    Google Scholar 

  44. E. Date, M. Jimbo, K. Miki, and T. Miwa. Cyclic represen-tations of U q(sl(n+ 1,C)) at q N = 1. Publ. Res. Inst. Math. Sci. 27 (1991), 347–366. MR 92i:17

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Deligne and J.S. Milne. Tannakian categories. In Hodge cycles, Motives and Shimura Varieties, volume 900 of Lecture Notes in Math., pages 101–228. Springer-Verlag, Berlin, 1982. MR 84m: 14046.

    Chapter  Google Scholar 

  46. R. Dijkgraaf, V. Pasquier, and P. Roche. QuasiHopf algebras, group cohomology and orbifold models. Nuclear Phys. B Proc. Suppl. 18B (1990), 60–72. MR 92m:81238.

    MathSciNet  MATH  Google Scholar 

  47. V.G. Drinfeld. Hopf algebras and the quantum Yang-Baxter equation. Dokl. Akad. Nauk SSSR 283:5 (1985), 1060–1064. English transl.: Soviet Math. Dokl. 32 (1985), 254-258. MR 87h:58080.

    MathSciNet  Google Scholar 

  48. V.G. Drinfeld. Quantum groups. In Proc. Int. Cong. Math. (Berkeley, 1986), pages 798–820. Amer. Math. Soc, Provi-dence, RI, 1987. MR 89f: 17017.

    Google Scholar 

  49. V.G. Drinfeld. On almost cocommutative Hopf algebras. Al-gebra i Analiz 12 1989 30–46. English transl. Leningrad Math J. 1 1990 321-342. MR 91b16046

    Google Scholar 

  50. V.G. Drinfeld. Quasi-Hopf algebras. Algebra i Analiz 1:6 (1989), 114–148. English transl.: Leningrad Math. J. 1 (1990), 1419-1457. MR 91b:17016.

    MathSciNet  Google Scholar 

  51. V.G. Drinfeld. Quasi-Hopf algebras and KnizhnikZamolodchikov equations. In Problems of modern quantum field theory (Alushta, 1989), Res. Rep. Phys., pages 1–13. Springer-Verlag, Berlin, 1989. MR 92j: 17011.

    Google Scholar 

  52. V.G. Drinfeld. On quasitriangular quasi-Hopf algebras and a group closely connected with Gal(/Q). Algebra i Analiz 2:4 (1990), 149–181. English transl.: Leningrad Math. J. 2 (1991), 829-860. MR 92f: 16047.

    MathSciNet  Google Scholar 

  53. S. Eilenberg and S. Mac Lane. On H * (π,π), I. Ann. of Math. (2) 58 (1953), 55–106.

    Article  MathSciNet  MATH  Google Scholar 

  54. B. Enriquez. Rational forms for twistings of enveloping algebras of simple Lie algebras. Lett. Math. Phys. 25 (1992), 111–120.

    Article  MathSciNet  MATH  Google Scholar 

  55. L.D. Faddeev. Integrable models in (1+1) -dimensional quan-tum field theory. Lectures at Les Houches 1982, Elsevier Sci-ence Publishers B.V., Amsterdam, New York, 1984.

    Google Scholar 

  56. P.J. Freyd and D.N. Yetter. Braided compact closed categories with applications to low-dimensional topology. Adv. Math. 77 (1989), 156–182. MR 91c:57019.

    Article  MathSciNet  MATH  Google Scholar 

  57. P. Freyd and D. Yetter. Coherence theorems via knot theory. J. Pure Appl. Algebra 78 (1992), 49–76. MR 93d:18013.

    Article  MathSciNet  MATH  Google Scholar 

  58. P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K.C. Mil-lett, and A. Ocneanu. A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. 12 (1985), 239–246. MR 86e:57007.

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Gerstenhaber. On the deformation of rings and algebras. Ann. of Math. (2) 79 (1964), 59–103.

    Article  MathSciNet  MATH  Google Scholar 

  60. V.A. Golubeva. On the recovery of a Pfafflan system of Fuchsian type from the generators of the monodromy group. Izv. Akad. Nauk SSSR 44:5 (1980), 979–998. English transl.: Math. USSR-Izv. 17 (1981), 227-241.

    MathSciNet  MATH  Google Scholar 

  61. G. Gasper and M. Rahman. Basic Hypergeometric Series, volume 35 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1990. MR 91d:33034.

    Google Scholar 

  62. M.N. Gusarov. A new form of the Conway-Jones polynomial of oriented links. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 193 (1991). Geom. i Topol., 1, 4–9, 161 (in Russian). MR 93b:57007.

    MathSciNet  MATH  Google Scholar 

  63. R.M. Hain. On a generalization of Hilbert’s 21st problem. Ann. Sci. École Norm. Sup. (4) 19 (1986), 609–627.

    MathSciNet  MATH  Google Scholar 

  64. P. de la Harpe, M. Kervaire, and C. Weber. On the Jones polynomial. Enseign. Math. (2) 32 (1986), 271–335. MR 88f:57004.

    MathSciNet  MATH  Google Scholar 

  65. T. Hayashi. Quantum groups and quantum determinants. J. Algebra 152 (1992), 146–165.

    Article  MathSciNet  MATH  Google Scholar 

  66. E. Heine. Über die Reihe Reine Angew. Math. 32 (1846), 210–212.

    Article  MATH  Google Scholar 

  67. G.R. Hochschild. Basic Theory of Algebraic Groups and Lie Algebras, volume 75 of Graduate Texts in Math. Springer-Verlag, New York, 1981. MR 82i:20002.

    Google Scholar 

  68. H. Hopf. Über die Topologie der Gruppen-Mannigfaltigkeiten und ihren Verallgemeinerungen. Ann. of Math. (2) 42 (1941), 22–52.

    Article  MathSciNet  Google Scholar 

  69. J. Hoste. A polynomial invariant of knots and links. Pacific J. Math. 124 (1986), 295–320. MR 88d:57004.

    MathSciNet  MATH  Google Scholar 

  70. V. Hugo. Pierres (Vers et Prose). Éditions du Milieu du Monde, Genève, 1951.

    Google Scholar 

  71. J.E. Humphreys. Introduction to Lie Algebras and their Rep-resentation Theory, volume 9 of Graduate Texts in Math. Springer Verlag, New York, 1972.

    Google Scholar 

  72. F.H. Jackson, q-difference equations. Amer. J. Math. 32 (1910), 305–314.

    Article  MathSciNet  MATH  Google Scholar 

  73. N. Jacobson. Lie Algebras. Dover PubL, New York, 1979.

    Google Scholar 

  74. M. Jimbo. A g-difference analogue of U(g) and the YangBaxter equation. Lett. Math. Phys. 10 (1985), 63–69. MR 86k:17008.

    Article  MathSciNet  MATH  Google Scholar 

  75. M. Jimbo. A q-analogue of U(gl(N + 1)), Hecke algebra and the Yang-Baxter equation. Lett. Math. Phys. 11 (1986), 247–252. MR 87k:17011.

    Article  MathSciNet  MATH  Google Scholar 

  76. M. Jimbo. Quantum R-matrix for the generalised Toda system. Comm. Math. Phys. 102 (1986), 537–547. MR 87h:58086.

    Article  MathSciNet  MATH  Google Scholar 

  77. A. Joseph and G. Letzter. Local finiteness of the adjoint action for quantized enveloping algebras. J. Algebra 153 (1992), 289–318.

    Article  MathSciNet  MATH  Google Scholar 

  78. V.F.R. Jones. A polynomial invariant for links via von Neumann algebras. Bull. Amer. Math. Soc. 12 (1985), 103–111. MR 86e:57006.

    Article  MathSciNet  MATH  Google Scholar 

  79. V.F.R. Jones. Hecke algebra representations of braid groups and link polynomials. Ann. of Math. (2) 126 (1987), 335–388. MR 89c:46092.

    Article  MathSciNet  MATH  Google Scholar 

  80. A. Joyal and R. Street. The geometry of tensor calculus, I. Adv. Math. 88 (1991), 55–112. MR 92d:18011.

    Article  MathSciNet  MATH  Google Scholar 

  81. A. Joyal and R. Street. An introduction to Tannakian duality. In Category Theory (Como, 1990}, volume 1488 of Lecture Notes in Math., pages 413–492. Springer-Verlag, Berlin, 1991. MR 93f:18015.

    Chapter  Google Scholar 

  82. A. Joyal and R. Street. Tortile Yang-Baxter operators in tensor categories. J. Pure Appl. Algebra 71 (1991), 43–51. MR 92e:18006.

    Article  MathSciNet  MATH  Google Scholar 

  83. A. Joyal and R. Street. Braided tensor categories. Adv. Math. 102 (1993), 20–78. Formerly Macquarie Math. Reports No. 850067 (Dec. 1985) and No. 860081 (Nov. 86).

    Article  MathSciNet  MATH  Google Scholar 

  84. M.M. Kapranov. The permutoassociahedron, Mac Lane’s co-herence theorem and asymptotic zones for the KZ equation. J. Pure Appl. Algebra 85 (1993), 119–142.

    Article  MathSciNet  MATH  Google Scholar 

  85. C. Kassel. Cours sur les groupes quantiques, le partie. Publ. I.R.M.A., Strasbourg, 1992. MR 93k:17030.

    Google Scholar 

  86. L.H. Kauffman. On Knots, volume 115 of Ann. of Math. Stud. Princeton University Press, Princeton, NJ, 1987. MR 89c:57005.

    Google Scholar 

  87. L.H. Kauffman. State models and the Jones polynomial. Topology 26 (1987), 395–407. MR 88f:57006.

    Article  MathSciNet  MATH  Google Scholar 

  88. L.H. Kauffman. Knots and Physics, volume 1 of Series on Knots and Everything. World Scientific Publ. Co, River Edge, NJ, 1991. MR 93b:57010.

    Google Scholar 

  89. G.M. Kelly. On Mac Lane’s conditions for coherence of natural associativities, commutativities, etc. J. Algebra 1 (1964), 397–402.

    Article  MathSciNet  MATH  Google Scholar 

  90. H.T. Koelink and T.H. Koornwinder. The Clebsch-Gordan coefficients for the quantum group SμU(2) and q-Hahn polyno-mials. Proc. Kon. Nederl. Akad. Wetensch. A 92, Indag. Math. (N.S.) 51 (1989), 443–456. MR 91c:17009.

    MathSciNet  MATH  Google Scholar 

  91. G.M. Kelly and M.L. Laplaza. Coherence for compact closed categories. J. Pure Appl. Algebra 19 (1980), 193–213. MR 81m:18008.

    Article  MathSciNet  MATH  Google Scholar 

  92. R. Kirby and P. Melvin. The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, C). Invent. Math. 105 (1991), 473–545. MR 92e:57011.

    Article  MathSciNet  MATH  Google Scholar 

  93. S. Kobayashi and K. Nomizu. Foundations of Differential Ge- ometry I,II. Wiley (Interscience), New York, 1963.

    Google Scholar 

  94. T. Kohno. Serie de Poincaré-Koszul associée aux groupes de tresses pures. Invent. Math. 82 (1985), 57–75. MR87c:32015a.

    Article  MathSciNet  MATH  Google Scholar 

  95. T. Kohno. Monodromy representations of braid groups and Yang-Baxter equations. Ann. Inst. Fourier (Grenoble) 37 (1987), 139–160. MR 89h:17030.

    Article  MathSciNet  MATH  Google Scholar 

  96. T. Kohno. Hecke algebra representations of braid groups and classical Yang-Baxter equations. In Conformal Field Theory and Solvable Lattice Models (Kyoto, 1986), volume 16 of Adv. Stud. Pure Math., pages 255–269. Academic Press, Boston, MA, 1988. MR 90a:17016.

    Google Scholar 

  97. M. Kontsevich. Vassiliev’s knot invariants. In Gelfand Seminar, Part 2, volume 16 of Adv. Soviet Math., pages 137–150. Amer. Math. Soc, Providence, RI, 1993.

    Google Scholar 

  98. T.H. Koornwinder. Orthogonal polynomials in connection with quantum groups. In Orthogonal Polynomials: Theory and Practice (Columbus, Ohio, 1989), volume 294 of NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., pages 257–292. Kluwer Acad. Publ., Dordrecht, 1990.

    Google Scholar 

  99. P.P. Kulish and N.Yu. Reshetikhin. Quantum linear problem for the sine-Gordon equation and higher representations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 101 (1981), 101–110. English transl.: J. Soviet Math. 23 (1983), 2435-2441.

    MathSciNet  Google Scholar 

  100. A.N. Kirillov and N.Yu. Reshetikhin. Representations of the algebra U q(sl(2)), g-orthogonal polynomials and invari-ant of links. In Infinite-dimensional Lie algebras and groups (Luminy-Marseille,1988), volume 7 of Adv. Ser. Math. Phys., pages 285–339. World Scientific, Teaneck, NJ, 1989}. MR 90m:170

    Google Scholar 

  101. A.N. Kirillov and N.Yu. Reshetikhin. q-Weyl group and a multiplicative formula for universal R-matrices. Comm. Math. Phys. 134 (1990), 421–431. MR 92c:17023.

    Article  MathSciNet  MATH  Google Scholar 

  102. P.P. Kulish and E.K. Sklyanin. Solutions of the Yang-Baxter equation. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 95 (1980), 129–160, 161. English transl: J. Soviet Math. 19 (1982), 1596-1620. MR 82i:82018.

    MathSciNet  Google Scholar 

  103. C. Kassel and V. Turaev. Double construction for monoidal categories. Preprint, I.R.M.A., Strasbourg, 1992, Acta Math. [KT94]_C. Kassel and V. Turaev. Chord diagram invariants for ribbon graphs. Preprint, I.R.M.A., Strasbourg, 1994.

    Google Scholar 

  104. V.G. Knizhnik and A.B. Zamolodchikov. Current algebra and Wess-Zumino models in two dimensions. Nuclear Phys. B 247 (1984), 83–103. MR 87h:81129.

    Article  MathSciNet  MATH  Google Scholar 

  105. S. Lang. Algebra. Addison Wesley, Reading, Mass., 1965.

    Google Scholar 

  106. J.A. Lappo-Danilevsky. Mémoires sur la Théorie des Systèmes Différentiels Linéaires. Chelsea Publ. Co, New York, NY, 1953.

    Google Scholar 

  107. X.S. Lin. Vertex models, quantum groups and Vassiliev’s knot invariants. Columbia University, Preprint, 1991.

    Google Scholar 

  108. W.B.R. Lickorish and K.C. Millett. A polynomial invariant of oriented links. Topology 26 (1987), 107–141. MR 88b:57012.

    Article  MathSciNet  MATH  Google Scholar 

  109. T.Q.T. Le and J. Murakami. Kontsevich’s integral for Kauff-man polynomial. Preprint, M.P.I. Bonn, 1993.

    Google Scholar 

  110. T.Q.T. Le and J. Murakami. Kontsevich’s integral for the HomfLy polynomial and relations between values of multiple zeta functions. Preprint, M.P.I. Bonn, 1993.

    Google Scholar 

  111. T.Q.T. Le and J. Murakami. Representations of the category of tangles by Kontsevich’s iterated integral. Preprint, M.P.I. Bonn, 1993.

    Google Scholar 

  112. S.Z. Levendorsky and Ya. S. Soibelman. Some applications of the quantum Weyl groups. J. Geom. Phys. 7 (1990), 241–254. MR 92g:17016.

    Article  MathSciNet  Google Scholar 

  113. R.G. Larson and J. Towber. Two dual classes of bialgebras related to the concepts of “quantum group” and “quantum Lie algebra”. Comm. Algebra 19 (1991), 3295–3345. MR 93b: 16070.

    Article  MathSciNet  MATH  Google Scholar 

  114. G. Lusztig. Quantum deformations of certain simple modules over enveloping algebras. Adv. Math. 70 (1988), 237–249. MR 89k:17029.

    Article  MathSciNet  MATH  Google Scholar 

  115. G. Lusztig. Modular representations and quantum groups. Contemp. Math. 82 (1989), 59–77. MR 90a: 16008.

    Article  MathSciNet  Google Scholar 

  116. G. Lusztig. Finite-dimensional Hopf algebras arising from quantized enveloping algebras. J. Amer. Math. Soc. 3 (1990), 257–296. MR 91e:17009.

    MathSciNet  MATH  Google Scholar 

  117. G. Lusztig. Quantum groups at roots of 1. Geom. Dedicata 35 (1990), 89–113. MR 91j:17018.

    Article  MathSciNet  MATH  Google Scholar 

  118. G. Lusztig. Introduction to Quantum Groups, volume 110 of Progr. Math. Birkhäuser, Boston, 1993.

    Google Scholar 

  119. S. Mac Lane. Natural associativity and commutativity. Rice Univ. Studies 49 (1963), 28–46.

    MathSciNet  Google Scholar 

  120. S. Mac Lane. Categories for the Working Mathematician, vol-ume 5 of Graduate Texts in Math. Springer-Verlag, New York, 1971.

    Google Scholar 

  121. S. Majid. Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construc-tion. J. Algebra 130 (1990), 17–64. MR 91j:16050.

    Article  MathSciNet  MATH  Google Scholar 

  122. S. Majid. Quasi-triangular Hopf algebras and Yang-Baxter equations. Intern. J. Modern Phys. A 5 (1990), 1–91. MR 90k:16008.

    Article  MathSciNet  MATH  Google Scholar 

  123. S. Majid. Doubles of quasitriangular Hopf algebras. Comm. Algebra 19 (1991), 3061–3073. MR 92k:16052.

    Article  MathSciNet  MATH  Google Scholar 

  124. S. Majid. Representations, duals and quantum doubles of monoidal categories. Rend. Circ. Math. Palermo (2) Suppl. 26 (1991), 197–206. MR 93c:18008.

    MathSciNet  Google Scholar 

  125. G. Maltsiniotis. Groupes quantiques et structures différentielles. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 831–834. MR 91m:58010.

    MathSciNet  MATH  Google Scholar 

  126. G. Maltsiniotis. Le langage des espaces et des groupes quantiques. Coram. Math. Phys. 151 (1993), 275–302.

    Article  MathSciNet  MATH  Google Scholar 

  127. Yu.I. Manin. Some remarks on Koszul algebras and quantum groups. Ann. Inst. Fourier (Grenoble) 37 (1987), 191–205. MR 89e:16022.

    Article  MathSciNet  MATH  Google Scholar 

  128. Yu.I. Manin. Quantum Groups and Noncommutative Geo-metry. Université de Montréal, Centre de Recherches Mathématiques, Montréal, 1988. MR 91e:17001.

    Google Scholar 

  129. Yu.I. Manin. Multiparametric quantum definition of the gen-eral linear supergroup. Comm. Math. Phys. 123 (1989), 163–175. MR 90h:17018.

    Article  MathSciNet  MATH  Google Scholar 

  130. A. Markoff. Über die freie Äquivalenz der geschlossenen Zöpfe. Recueil Mathématique, Mat. Sb. 1(43) (1936), 73–78.

    MATH  Google Scholar 

  131. H. Matsumura. Commutative Algebra. W.A. Benjamin, New York, 1970.

    Google Scholar 

  132. J. Milnor and J. Moore. On the structure of Hopf algebras. Ann. of Math. (2) 81 (1965), 211–264.

    Article  MathSciNet  MATH  Google Scholar 

  133. T. Masuda, K. Mimachi, Y. Nagakami, M. Noumi, Y. Saburi, and K. Ueno. Unitary representations of the quantum group SU q (1,1): Structure of the dual space of U q(sl(2)). . Lett. Math. Phys. 19 (1990), 187–194. MR 91h:33

    Article  MathSciNet  MATH  Google Scholar 

  134. J.A. Moody. The Burau representation of the braid group B n is unfaithful for large n. Bull. Amer. Math. Soc. 25 (1991), 379–384. MR 92b:20041.

    Article  MathSciNet  MATH  Google Scholar 

  135. J.C. McConnell and J.C. Robson. Noncommutative Noetherian Rings. John Wiley and Sons, Ltd, Chichester, 1987. MR 89j:16023.

    Google Scholar 

  136. O. Ore. Theory of non-commutative polynomials. Ann. Math. (2) 34 (1933), 480–508.

    Article  MathSciNet  MATH  Google Scholar 

  137. B. Pareigis. A non-commutative non-cocommutative Hopf algebra in “nature”. J. Algebra 70 (1981), 356–374. MR 83g:16021.

    Article  MathSciNet  MATH  Google Scholar 

  138. S. Piunikhin. Weights of Feynman diagrams, link polynomials and Vassiliev knot invariants. Preprint, 1992.

    Google Scholar 

  139. S. Piunikhin. Combinatorial expression for universal Vassiliev link invariant. Harvard University, Preprint, 1993.

    Google Scholar 

  140. H. Poincaré. Sur les groupes d’équations linéaires. Acta Math. 4 (1884), 201–311. (also in Euvres, tome II, Gauthier-Villars, Paris 1916).

    Article  MathSciNet  MATH  Google Scholar 

  141. J.H. Przytycki and P. Traczyk. Invariants of links of Conway type. Kobe J. Math. 4 (1987), 115–139.

    MathSciNet  MATH  Google Scholar 

  142. P. Podleś and S. Woronowicz. Quantum deformation of Lorentz group. Comm. Math. Phys 130 (1990), 383–431. MR 91f:46100.

    Article  Google Scholar 

  143. B. Parshall and J.P. Wang. Quantum Linear Groups, volume 439 of Mem. Amer. Math. Soc. Amer. Math. Soc, Providence, RI, 1991. MR 91g:16028.

    Google Scholar 

  144. P. Roche and D. Arnaudon. Irreducible representations of the quantum analogue of SU(2). Lett. Math. Phys. 17 (1989), 295–300. MR 90f: 17013.

    Article  MathSciNet  MATH  Google Scholar 

  145. D.E. Radford. The order of the antipode of a finitedimensional Hopf algebra is finite. Amer. J. Math. 98 (1976), 333–355.

    Article  MathSciNet  MATH  Google Scholar 

  146. D.E. Radford. Minimal quasitriangular Hopf algebras. J. Al-gebra 157 (1993), 285–315.

    Article  MathSciNet  MATH  Google Scholar 

  147. D.E. Radford. Solutions to the quantum Yang-Baxter equa-tion and the Drinfeld double. J. Algebra 161 (1993), 20–32.

    Article  MathSciNet  MATH  Google Scholar 

  148. R. Ree. Lie elements and an algebra associated with shuffles. Ann. of Math (2) 68 (1958), 210–220.

    Article  MathSciNet  MATH  Google Scholar 

  149. K. Reidemeister. Knotentheorie, volume 1 of Ergebnisse der Mathematik und ihrer Grenzgebiete (Alte Folge). Julius Springer, Berlin, 1932. English transl.: Knot Theory, BSC As-sociates, Moscow, Idaho, 1983.

    Google Scholar 

  150. N.Yu. Reshetikhin. Multiparametric quantum groups and twisted quasitriangular Hopf algebras. Lett. Math. Phys. 20 (1990), 331–335. MR 91k:17012.

    Article  MathSciNet  MATH  Google Scholar 

  151. C. Reutenauer. Free Lie Algebras. Clarendon Press, Oxford, 1993.

    Google Scholar 

  152. D. Rolfsen. Knots and Links, volume 7 of Mathematics Lecture Series. Publish or Perish, Berkeley, 1976.

    Google Scholar 

  153. M. Rosso. Finite-dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie alge-bra. Coram. Math. Phys. 117 (1988), 581–593. MR90c:17019.

    Article  MathSciNet  MATH  Google Scholar 

  154. M. Rosso. An analogue of P.B.W. theorem and the universal R-matrix for Uhsl(N + 1). Coram. Math. Phys. 124 (1989), 307–318. MR 90h:17019.

    Article  MathSciNet  MATH  Google Scholar 

  155. M. Rosso. Analogues de la formule de Killing et du théorème d’Harish-Chandra pour les groupes quantiques. Ann. Sci. Ecole. Norm. Sup. (4) 23 (1990), 445–467. MR 93e:17026.

    MathSciNet  MATH  Google Scholar 

  156. M. Rosso. Représentations des groupes quantiques. In Seminaire Bourbaki, volume 201-203 of Astérisque, pages 443–483. S.M.F., Paris, 1992. MR 93b:17050.

    Google Scholar 

  157. N.Yu. Reshetikhin and M.A. Semenov-Tian-Shansky. Quan-tum R-matrices and factorization problems. J. Geom. Phys. 5 (1988), 533–550. MR 92g:17019.

    Article  MathSciNet  MATH  Google Scholar 

  158. N.Yu. Reshetikhin and V.G. Turaev. Ribbon graphs and their invariants derived from quantum groups. Coram. Math. Phys. 127 (1990), 1–26. MR 91c:57016.

    Article  MathSciNet  MATH  Google Scholar 

  159. N.Yu. Reshetikhin and V.G. Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991), 547–597. MR 92b:57024.

    Article  MathSciNet  MATH  Google Scholar 

  160. N.Yu. Reshetikhin, L.A. Takhtadjian, and L.D. Faddeev. Quantization of Lie groups and Lie algebras. Algebra i Analiz 1 (1989), 178–206. English transl: Leningrad Math. J. 1 (1990), 193-225. MR 90j:17039.

    Google Scholar 

  161. H. Saleur. Representations of Uq(sl(2)) for q a root of unity. In Number theory and physics (Les Houches, 1989), volume 47 of Springer Proc. Phys., pages 68–76. Springer, Berlin, 1990. MR 911:17023.

    Chapter  Google Scholar 

  162. P. Schauenburg. On Coquasitriangular Hopf Algebras and the Quantum Yang-Baxter Equation, volume 67 of Algebra Berichte. Verlag Reinhard Fischer, München, 1992.

    Google Scholar 

  163. Séminaire Cartan. Algèbres d’Eilenberg-Mac Lane et homotopie (1954-55). ÉÉcole Normale Superieure, Paris, 1956. (also published by W.A. Benjamin, Inc., New York, Amsterdam, (1967).

    Google Scholar 

  164. J.-P. Serre. Lie Algebras and Lie Groups. W.A. Benjamin, Inc., New York, Amsterdam, 1965.

    Google Scholar 

  165. J.-P. Serre. Gèbres. Enseign. Math. (2) 39 (1993), 33–85.

    MathSciNet  MATH  Google Scholar 

  166. M.C. Shum. Tortile tensor categories. Ph.D. Thesis, Macquarie University, Nov. 1989, Macquarie Math. Report No. 900047, 1990. J. Pure Appl. Algebra, to appear in 1994.

    Google Scholar 

  167. E.K. Sklyanin. Ori an algebra generated by quadratic relations. Uspekhi Mat. Nauk 40:2 (242) (1985), 214. (in Rus-sian).

    Google Scholar 

  168. L.J. Slater. Generalized Hypergeometric Functions. Cambridge University Press, Cambridge, 1966.

    Google Scholar 

  169. N. Saavedra Rivano. Catégories Tannakiennes, volume 265 of Lecture Notes in Math. Springer-Verlag, Berlin, New York, 1972.

    Google Scholar 

  170. T. Stanford. Finite-type invariants of knots, links, and graphs. Columbia University, Preprint, 1992.

    Google Scholar 

  171. T. Stanford. Braid commutators and Vassiliev invariants.Preprint, 1993.

    Google Scholar 

  172. A. Sudbery. Consistent multiparametric quantisation of GL(n). J. Phys. A23} (1990}), L697-L704. MR 91m:17

    Google Scholar 

  173. M. Sweedler. Hopf Algebras. W.A. Benjamin, Inc., New York, 1969.

    Google Scholar 

  174. E.J. Taft. The order of the antipode of finite-dimensional Hopf algebras. Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2631–2633.

    Article  MathSciNet  MATH  Google Scholar 

  175. M. Takeuchi. Matched pairs of groups and bismash products of Hopf algebras. Comm. Algebra 9 (1981), 841–882. MR 83f:16013.

    Article  MathSciNet  MATH  Google Scholar 

  176. M. Takeuchi. Topological coalgebras. J. Algebra 97 (1985), 505–539.

    Article  MathSciNet  MATH  Google Scholar 

  177. M. Takeuchi. Quantum orthogonal and symplectic groups and their embedding into quantum GL. Proc. Japan Acad. Ser. A Math. Set. 65 (1989), 55–58. MR 90j:16024.

    Article  MATH  Google Scholar 

  178. M. Takeuchi. Finite-dimensional representations of the quan-tum Lorentz group. Comm. Math. Phys. 144 (1992), 557–580. MR 93c: 17030.

    Article  MathSciNet  MATH  Google Scholar 

  179. M. Takeuchi. Hopf algebra techniques applied to the quantum group U q (sl(2)). In Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, 1990), volume 134 of Contemp. Math., pages 309–323. Amer. Math. Soc, Providence, RI, 1992.

    Article  Google Scholar 

  180. M. Takeuchi. Some topics on GL q (n). J. Algebra 147 (1992), 379–410. MR 93b:17055.

    Article  MathSciNet  MATH  Google Scholar 

  181. T. Tanisaki. Harish-Chandra isomorphisms for quantum algebras. Comm. Math. Phys. 127 (1990), 555–571.

    Article  MathSciNet  MATH  Google Scholar 

  182. W.J. Trjitzinsky. Analytic theory of linear g-difference equations. Acta Math. 61 (1933), 1–38.

    Article  MathSciNet  Google Scholar 

  183. V.G. Turaev. The Yang-Baxter equation and invariants of links. Invent. Math. 92 (1988), 527–553. MR 89e:57003.

    Article  MathSciNet  MATH  Google Scholar 

  184. V.G. Turaev. Operator invariants of tangles and R-matrices. Izv. Akad. Nauk SSSR Ser. Math. 53:5 (1989), 1073–1107. English transl.: Math. USSR-Izv. 35 (1990), 411-444. MR 91e:17011.

    MathSciNet  Google Scholar 

  185. V.G. Turaev. Modular categories and 3-manifold invariants. Intern. J. Modern Phys. B 6 (1992), 1807–1824.

    Article  MathSciNet  MATH  Google Scholar 

  186. V.G. Turaev. Quantum invariants of knots and 3-manifolds. W. de Gruyter, Berlin, 1994.

    MATH  Google Scholar 

  187. E.J. Taft and R.L. Wilson. There exist finite-dimensional Hopf algebras with antipodes of arbitrary even order. J. Algebra 62 (1980), 283–291. MR 81d:16008.

    Article  MathSciNet  MATH  Google Scholar 

  188. L.L. Vaksman. q-analogues of Clebsch-Gordan coefficients, and the algebra of functions on the quantum SU(2) group. Dokl. Akad. Nauk SSSR 306:2 (1989), 269–271. English transl.: Soviet Math. Dokl. 39 (1989), 467-470. MR 90k:33018.

    MathSciNet  Google Scholar 

  189. V.S. Varadarajan. Lie groups, Lie algebras, and their representations. Prentice Hall, Inc., Englewood Cliffs, NJ, 1974.

    MATH  Google Scholar 

  190. V.A. Vassiliev. Cohomology of knot spaces. In V.I. Arnold, editor, Theory of singularities and applications, volume 1 of Adv. Soviet Math., pages 23–69. Amer. Math. Soc, Providence, RI, 1990. MR 92a:57016.

    Google Scholar 

  191. V.A. Vassiliev. Complements of discriminants of smooth maps, volume 98 of Transl. Math. Monographs. Amer. Math. Soc, Providence, RI, 1992.

    Google Scholar 

  192. P. Vogel. Invariants de Vassiliev des nceuds (d’après D. Bar-Natan, M. Kontsevich et V.A. Vassiliev). In Séminaire Bour-baki, volume 216 of Astérisque, pages 213–232. S.M.F., Paris, 1993.

    Google Scholar 

  193. W. Wasow. Asymptotic Expansions for Ordinary Differential Equations. Dover Publ., New York, 1987.

    MATH  Google Scholar 

  194. S.L. Woronowicz. Compact matrix pseudo-groups. Comm. Math. Phys. 111 (1987), 613–665. MR 88m:46079.

    Article  MathSciNet  MATH  Google Scholar 

  195. S.L. Woronowicz. Twisted SU(2) group. An example of non-commutative differential calculus. Publ. Res. Inst. Math. Sci. 23 (1987), 117–181. MR 88h:46130.

    Article  MathSciNet  MATH  Google Scholar 

  196. S.L. Woronowicz. Tannaka-Krein duality for compact ma-trix pseudo-groups, twisted SU(N) groups. Invent. Math. 93 (1988), 35–76. MR 90e:22033.

    Article  MathSciNet  MATH  Google Scholar 

  197. H. Yamane. A Poincaré-Birkhoff-Witt theorem for quantized enveloping algebras of type AN. Publ. Res. Inst. Math. Sci. 25 (1989), 503–520. MR 91a:17016.

    Article  MathSciNet  MATH  Google Scholar 

  198. C.N. Yang. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19 (1967), 1312–1315.

    Article  MathSciNet  MATH  Google Scholar 

  199. D.N. Yetter. Markov algebras. In Braids (Santa Cruz, 1986), volume 78 of Contemp. Math., pages 705–730. Amer. Math. Soc, Providence, RI, 1988.

    Article  MathSciNet  Google Scholar 

  200. D.N. Yetter. Quantum groups and representations of monoidal categories. Math. Proc. Cambridge Philos. Soc. 108 (1990), 261–290. MR 91k:16028.

    Article  MathSciNet  MATH  Google Scholar 

  201. D. Zagier. Values of zeta functions and their applications. M.P.I., Bonn, Preprint, 1993. Proc. E.C.M., to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kassel, C. (1995). Postlude. A Universal Knot Invariant. In: Quantum Groups. Graduate Texts in Mathematics, vol 155. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0783-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0783-2_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6900-7

  • Online ISBN: 978-1-4612-0783-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics