Skip to main content
  • 138 Accesses

Abstract

Despite intensive investigation over the past several decades, the cause and mechanism of inflammatory bowel disease (IBD) remain unknown. The pathogenesis of IBD is certainly more complex than a simple single cause-and-effect relationship, and probably results from the interaction of predisposing genetic factors, exogenous and endogenous triggers, and host modifying factors (1-3). The outcome of these multiple interactions is the chronic remitting and relapsing inflammatory process recognized clinically as ulcerative colitis or Crohn’s disease. Although we, as yet, do not fully understand the intimate mechanisms of the complicated host-environment relationship which result in IBD, research in the areas of genetics, intestinal microbiology and ecology, immunology, and experimental animal models have greatly increased our understanding of the individual components of the disease process and how they may interrelate. This chapter will synthetically review the state-of-the-art knowledge on the possible causes and mechanisms of ulcerative colitis and Crohn’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shanahan F. Pathogenesis of ulcerative colitis. Lancet 1993;342:407–411.

    Article  PubMed  CAS  Google Scholar 

  2. Fiocchi C. Overview of inflammatory bowel disease pathogenesis. Can J Gastroenterol 1990;4:309–316.

    Google Scholar 

  3. Fiocchi C. New concepts of pathogenesis in inflammatory bowel disease. In: Collins SM, Martin F, McLeod RS, Targan SR, Wallace JL, Williams CN, eds. Inflammatory Bowel Disease. Basic Research, Clinical Implications and Trends in Therapy. Lancaster: Kluwer Academic 1994:243–261.

    Google Scholar 

  4. McConnell R, Vadheim C. Inflammatory bowel disease. In: King R, Rotter J, Motulsky A, eds. The Genetic Basis of Common Diseases. New York: Oxford University Press, 1992:326–348.

    Google Scholar 

  5. Yang H, Rotter J. Genetics of inflammatory bowel disease. In: Targan S, Shanahan F, eds. Inflammatory Bowel Disease: From Bench to Bedside. Baltimore: Williams & Wilkins, 1994:32–64.

    Google Scholar 

  6. Orholm M, Munkholm P, Langholz E, et al. Familial occurence of inflammatory bowel disease. N Engl J Med 1991;324:84–88.

    Article  PubMed  CAS  Google Scholar 

  7. Singer H, Anderson J, Frischer H, et al. Familial aspects of inflammatory bowel disease. Gastroenterology 1971;61:423–430.

    PubMed  CAS  Google Scholar 

  8. Lashner B, Evans A, Kirsner J, et al. Prevalence and incidence of inflammatory bowel disease in family members. Gastroenterology 1986;91:1396–1400.

    PubMed  CAS  Google Scholar 

  9. Meucci G, Vecchi M, Torgano G, et al. Familial aggregation of inflammatory bowel disease in northern Italy: a multicenter study. Gastroenterology 1992;103:514–519.

    PubMed  CAS  Google Scholar 

  10. Yang H, McElree C, Roth M-P, et al. Familial empirical risks for inflammatory bowel disease: differences between Jews and non-Jews. Gut 1993;34:517–524.

    Article  PubMed  CAS  Google Scholar 

  11. Polito J, Childs B, Mellits E, et al. Crohn’s disease: influence of age at diagnosis on site and clinical type of disease. Gastroenterology 1996;111:580–586.

    Article  PubMed  Google Scholar 

  12. Peeters M, Nevens H, Baert F, et al. Familial aggregation in Crohn’s disease: increased age adjusted risk and concordance in clinical characteristics. Gastroenterology 1996;111:597–603.

    Article  PubMed  CAS  Google Scholar 

  13. Lee J, Lennard-Jones J. Inflammatory bowel disease in 67 families each with three or more affected first-degree relatives. Gastroenterology 1996;111:587–596.

    Article  PubMed  CAS  Google Scholar 

  14. Colombel J, Grandbastien B, Gower-Rousseau C, et al. Clinical characterisitics of Crohn’s disease in 72 families. Gastroenterology 1996;111:604–607.

    Article  PubMed  CAS  Google Scholar 

  15. Bayless T, Tokayer A, Polito J, et al. Crohn’s disease: concordance for site and clinical type in affected family members-potential heriditary influences. Gastroenterology 1996;111:573–579.

    Article  PubMed  CAS  Google Scholar 

  16. Tysk C, Lindberg E, Jarnerot G, et al. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins: a study of heritability and the influence. Gut 1988;29:990–996.

    Article  PubMed  CAS  Google Scholar 

  17. Gilat T, Grossman A, Fireman Z, et al. Inflammatory bowel disease in Jews. In: McConnell R, Rozen P, Langman M, Gilat T, eds. The Genetics and Epidemiology of Inflammatory Bowel Disease. New York: Krager, 1986:135–140.

    Google Scholar 

  18. Krawiec J, Odes H, Lasry Y, et al. Aspects of the epidemiology of Crohn’s disease in the Jewish population of Beer Sheva, Israel. Isr J Med Sci 1984;20:16–21.

    PubMed  CAS  Google Scholar 

  19. Weinreb I, Fineman R, Spiro H. Turner’s syndrome and inflammatory bowel disease. N Engl J Med 1976;294:1221, 1222.

    Article  Google Scholar 

  20. Kohler J, Grant D. Crohn’s disease in Turner’s syndrome. Br Med J 1981;282:950.

    Article  CAS  Google Scholar 

  21. Schinella R, Greco A, Cobert B, et al. Hermansky-Pudlak syndrome with granulomatous colitis. Ann Intern Med 1980;92:20–23.

    PubMed  CAS  Google Scholar 

  22. Mahadeo R, Markowitz J, Fisher S, et al. Hemansky-Pudlak syndrome with granulomatous colitis in children. J Pediatr 1991;118:904–906.

    Article  PubMed  CAS  Google Scholar 

  23. Roe T, Schonfeld N, Thomas D, et al. Regional enteritis and glycogen storage disease type Ib. Lancet 1984;1:1077.

    Article  PubMed  CAS  Google Scholar 

  24. Duerr RH, Targan SR, Landers CJ, et al. Anti-neutrophil cytoplasmic antibodies in ulcerative colitis. Comparison with other colitides/diarrheal diseases. Gastroenterology 1991;100:1590–1596.

    PubMed  CAS  Google Scholar 

  25. Saxon A, Shanahan F, Landers C, et al. A distinct subset of anti-neutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. J Allergy Clin Immunol 1990;86:202–210.

    Article  PubMed  CAS  Google Scholar 

  26. Duerr R, Targan S, Landers C, et al. Neutrophil cytoplasmic antibodies: a link between primary sclerosing cholangitis and ulcerative colitis. Gastroenterology 1991;100:1385–1391.

    PubMed  CAS  Google Scholar 

  27. Shanahan F, Duerr RH, Rotter JI, et al. Neutrophil autoantibodies in ulcerative colitis: familial aggregation and genetic heterogeneity. Gastroenterology 1992;103:456–461.

    PubMed  CAS  Google Scholar 

  28. Reumaux D, Colombel J, Delecourt L, et al. Anti-neutrophil cytoplasmic anitbodies (ANCA) in patients with ulcerative colitis (UC): influence of disease activity and family study. Adv Exp Med Biol 1993;336:515–518.

    PubMed  CAS  Google Scholar 

  29. Siebold F, Weber P, Klein R, et al. Clinical significance of antibodies against neutrophils in patients with inflammatory bowel disease and primary sclerosing cholangitis. Gut 1992;33:657–662.

    Article  Google Scholar 

  30. Lee J, Lennard-Jones J, Cambridge G. Anti-neutrophil antibodies in familial inflammatory bowel disease. Gastroenterology 1995;108:428–433.

    Article  PubMed  CAS  Google Scholar 

  31. Bjarnason I, O’Morain C, Levi AJ, et al. Absorption of 51-chromium-labelled ethylenediaminetetracetate in inflammatory bowel disease. Gastroenterology 1983;85:318–322.

    PubMed  CAS  Google Scholar 

  32. Adenis A, Colombel J, Lecouffe P, et al. Increased pulmonary and intestinal permeability in Crohn’s disease. Gut 1992;33:678–682.

    Article  PubMed  CAS  Google Scholar 

  33. Hollander D, Vadheim C, Brettholz E, et al. Increased intestinal permeability in patients with Crohn’s disease and their relatives. Ann Int Med 1986;105:883–885.

    PubMed  CAS  Google Scholar 

  34. Pearson AD, Eastman EJ, Laker MF, et al. Intestinal permeability in children with Crohn’s disease and coeliac disease. Br Med J 1982;285:20–21.

    Article  CAS  Google Scholar 

  35. Katz K, Hollander D, Vadheim C, et al. Intestinal permeability in patients with Crohn’s disease and their healthy relatives. Gatroenterology 1989;97:927–931.

    CAS  Google Scholar 

  36. Teahon K, Smethurst P, Levi A, et al. Intestinal permeability in patients with Crohn’s disease and their first degree relatives. Gut 1992;33:320–323.

    Article  PubMed  CAS  Google Scholar 

  37. May G, Sutherland L, Meddings J. Is small intestinal permeability really increased in relatives of patients with Crohn’s disease? Gastroenterology 1993;104:1627–1632.

    PubMed  CAS  Google Scholar 

  38. Sugimura K, Asakura H, Mizuki N, et al. Analysis of genes within the HLA region affecting susceptibility to inflammatory bowel disease. Hum Immunol 1993;36:112–118.

    Article  PubMed  CAS  Google Scholar 

  39. Futami S, Aoyama N, Honsako Y, et al. HLA-DRB1*1502 allele, subtype of DR15, is associated with susceptibility to ulcerative colitis and its progression. Dig Dis Sci 1995;40:814–818.

    Article  PubMed  CAS  Google Scholar 

  40. Asakura H, Tsuchiya M, Aiso S, et al. Association of the human lymphocyte-DR2 antigen with japanese ulcerative colitis. Gastroenterology 1982;82:413–418.

    PubMed  CAS  Google Scholar 

  41. Toyoda H, Wang SJ, Yang HJ, et al. Distinct associations of HLA class II genes with inflammatory bowel disease. Gastroenterology 1993;104:741–748.

    PubMed  CAS  Google Scholar 

  42. Duerr R, Neigut D. Molecularly defined HLA-DR2 alleles in ulcerative colitis and an antineutrophil cytoplasmic antibody-positive subgroup. Gastroenterology 1995;108:423–427.

    Article  PubMed  CAS  Google Scholar 

  43. Purrmann J, Bertrams J, Knapp M, et al. Gene and haplotype frequencies of HLA antigens in 269 patients with Crohn’s disease. Scand J Gastroenterol 1990;25:981–985.

    Article  PubMed  CAS  Google Scholar 

  44. Smolen J, Gangl A, Polterauer P, et al. HLA antigens in inflammatory bowel disease. Gastroenterology 1982;82:413–418.

    Google Scholar 

  45. Boehm B, Reinshagen M, Loeliger C, et al. HLA class II genes in Crohn’s disease: a population based analysis (abstract). Gasteoenterology 1994;106:A654.

    Google Scholar 

  46. Matake H, Okabe N, Naito S, et al. An HLA study on 149 Japanese patients with Crohn’s disease. Gastroenterol Jpn 1992;27:496–501.

    PubMed  CAS  Google Scholar 

  47. Fujita K, Naito S, Okabe N, et al. Immunological studies in Crohn’s disease. I. Assocaition with HLA systems in the Japanese. J Clin Lab Immunol 1984;14:99–102.

    PubMed  CAS  Google Scholar 

  48. Casini-Raggi V, Kam L, Chong YJT, et al. Mucosal imbalance of interleukin-1 and interleukin-1 receptor antagonist in inflammatory bowel disease: a novel mechanism of chronic inflammation. J Immunol 1995;154:2434–2440.

    PubMed  CAS  Google Scholar 

  49. Isaacs KL, Sartor RB, Haskill S. Cytokine messenger RNA profiles in inflammatory bowel disease mucosa detected by polymerase chain reaction amplification. Gastroenterology 1992;103:1587–1595.

    PubMed  CAS  Google Scholar 

  50. Duerr R, Tran T. Association between ulcerative colitis and a polymorphism in intron 2 of the interleukin-1 receptor antagonist gene (abstract). Gastroenterology 1995;108:A812.

    Article  Google Scholar 

  51. Mansfield JC, Holden H, Tarlow JK, et al. Novel genetic association between ulcerative colitis and the anti-inflammatory cytokine interleukin-1 receptor antagonist. Gastroenterology 1994;106:637–642.

    PubMed  CAS  Google Scholar 

  52. Plevy S, Targan S, Yang H, et al. Tumor necrosis factor microsatellites define a Crohn’s disease-associated haplotype on chromosome 6. Gastroenterology 1996;110:1053–1060.

    Article  PubMed  CAS  Google Scholar 

  53. Hugot J, Laurent-Puig P, Gower-Rousseau C, et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 1996;379:821–823.

    Article  PubMed  CAS  Google Scholar 

  54. Rutgeerts P, Goboes K, Peeters M, et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 1991;2:771–774.

    Article  Google Scholar 

  55. O’Morain C, Segal A, Levi A. Elemental diet as primary treatment of acute Crohn’s disease: a controlled study. Br Med J 1984;288:1859–1862.

    Article  Google Scholar 

  56. Ursing B, Alm T, Barany F, et al. A comparative study of metronidazole and sulfasalazine for active Crohn’s disease: the Cooperative Crohn’s Disease Study in Sweeden. Gastroenterology 1982;83:550–562.

    PubMed  CAS  Google Scholar 

  57. Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993;75:263–274.

    Article  PubMed  CAS  Google Scholar 

  58. Wensinck R. The fecal flora in patients with Crohn’s disease. Antonie van Leeuwenhoek 1975;41:214–215.

    Article  PubMed  CAS  Google Scholar 

  59. Burke D, Axon A. Hydrophobic adhesion of E. coli in ulcerative colitis. Gut 1988;29:41–43.

    Article  PubMed  CAS  Google Scholar 

  60. Belsheim MR, Darwish RZ, Watson WC, et al. Bacterial L-form isolation from inflammatory bowel disease patients. Gastroenterology 1983;85:364–369.

    PubMed  CAS  Google Scholar 

  61. Ibbotson JP, Pease PE, Allan RN. Cell-wall deficient bacteria in inflammatory bowel disease. Eur J Clin Microbiol 1987;6:429–431.

    Article  PubMed  CAS  Google Scholar 

  62. Parent K, Mitchell PD. Bacterial variants: etiologic agents in Crohn’s disease? Gastroenterology 1976;71:365–368.

    PubMed  CAS  Google Scholar 

  63. Blaser M, Miller R, Lacher J, et al. Patients with active Crohn’s disease have elevated serum antibodies to antigens of seven enteric bacterial pathogens. Gastroenterology 1984;87:888–894.

    PubMed  CAS  Google Scholar 

  64. Dalziel TK. Chronic interstitial enteritis. Br Med J 1913;2:1068–1070.

    Google Scholar 

  65. Chiodini R, van Kruiningen H, Thayer W, et al. Possible role of mycobacteria in inflammatory bowel disease: I. An unclassified Mycobacterium species isolated from patients with Crohn’s disease. Dig Dis Sci 1984;29:1073–1079.

    Article  PubMed  CAS  Google Scholar 

  66. Chiodini R, van Kruiningen H, Merkal R, et al. Characteristics of an unclassified Mycobacterium species isolated from patients with Crohn’s disease. J Clin Microbiol 1984;20:966–971.

    PubMed  CAS  Google Scholar 

  67. Gitnick G, Collins J, Beaman B, et al. Preliminary report on isolation of Mycobacteria from patients with Crohn’s disease. Dig Dis Sci 1989;34:925–932.

    Article  PubMed  CAS  Google Scholar 

  68. Graham DY, Markesich DC, Yoshimura HH. Myco-bateria and inflammatory bowel disease. Results of culture. Gastroenterology 1987;92:436–442.

    PubMed  CAS  Google Scholar 

  69. McFadden JJ, Thompson J, Hull E, et al. The use of cloned DNA probes to examine organisms isolated from Crohn’s disease tissue. In: MacDermott RP, ed. Inflammatory Bowel Disease: Current Status and Future Applications. Amsterdam: Elsevier, 1988:515–520.

    Google Scholar 

  70. Sanderson J, Moss M, Tizard M, et al. Mycobacterium paratuberculosis DNA in Crohn’s disease tissue. Gut 1992;33:890–896.

    Article  PubMed  CAS  Google Scholar 

  71. McFadden JJ, Seechurn P. Mycobacteria and Crohn’s disease. A molecular approach. In: MacDermott RP, Stenson WF, eds. Inflammatory Bowel Disease. New York: Elsevier, 1992:259–271.

    Google Scholar 

  72. Afdhal NH, Long A, Lennon J, et al. Controlled trial of antimycobacterial therapy in Crohn’s disease: clofazimine versus placebo. Dig Dis Sci 1991;36:449–453.

    Article  PubMed  CAS  Google Scholar 

  73. Shaffer JL, Hughes S, Linaker BD, et al. Controlled trial of rifampicine and ethambutol in Crohn’s disease. Gut 1984;25:203–205.

    Article  PubMed  CAS  Google Scholar 

  74. Swift GL, Srivastava ED, Stone R, et al. A controlled trial of 2 years’ antituberculous chemotherapy in Crohn’s disease (abstract). Gastroenterology 1993;104:A787.

    Google Scholar 

  75. Ekbom A, Adami HO, Hernick CG, et al. Perinatal risk factors of inflammatory bowel disease: a case control study. Am J Epidemiol 1990;132:1111–1119.

    PubMed  CAS  Google Scholar 

  76. Gitnick GL, Arthur MH, Shibata I. Cultivation of viral agents from Crohn’s disease. Lancet 1976;2:215–217.

    Article  PubMed  CAS  Google Scholar 

  77. Mitchell D, Rees R. Agent transmissible from Crohn’s disease tissue. Lancet 1970;2:168–171.

    Article  PubMed  CAS  Google Scholar 

  78. Aronson M, Phillips C, Beeken W, et al. Isolation and characterization of a viral agent from intestinal tissue of patients with Crohn’s disease and other intestinal disorders. Prog Med Virol 1975;21:165–176.

    PubMed  CAS  Google Scholar 

  79. Farmer GW, Vincent MM, Fuccillo DA, et al. Viral investigations in ulcerative colitis and regional enteritis. Gastroenterology 1973;65:8–18.

    PubMed  CAS  Google Scholar 

  80. Wakefield A, Pittilo R, Sim R, et al. Evidence of persistent measles vims infection in Crohn’s disease. J Med Virol 1993;39:345–353.

    Article  PubMed  CAS  Google Scholar 

  81. Wakefield AJ, Ekbom A, Dhillon AP, et al. Crohn’s disease: pathogenesis and persistent measles virus infection. Gastroenterology 1995;108:911–916.

    Article  PubMed  CAS  Google Scholar 

  82. Wakefield AJ, Dhillon AP, Rowles PM, et al. Pathogenesis of Crohn’s disease: multifocal gastrointestinal infarction. Lancet 1989;2:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  83. Wakefield A, Sankey E, Dhillon AP, et al. Granu-lomatous vasculitis in Crohn’s disease. Gastroenterology 1991;100:1279–1287.

    PubMed  CAS  Google Scholar 

  84. Ekbom A, Wakefiled A, Zack M, et al. The role of perinatal measles infection in the aetiology of Crohn’s disease: a population based epidemiological study. Lancet 1994;344:508–510.

    Article  PubMed  CAS  Google Scholar 

  85. Lindberg E, Magnusson KE, Tysk C, et al. Antibody (IgG, IgA, and IgM) to baker’s yeast (Saccharomyces cerevisiae), yeast mannan, gliadin, oval-bumin and betalactoglobulin in monozygotic twins with inflammatory bowel disease. Gut 1992;33:909–913.

    Article  PubMed  CAS  Google Scholar 

  86. McKenzie H, Main J, Pennington CR, et al. Antibody to selected strains of Saccharomyces cerevisiae (baker’s and brewer’ yeast) and Candida albicans in Crohn’s disease. Gut 1990;31:536–538.

    Article  PubMed  CAS  Google Scholar 

  87. Giaffer MH, Clark A, Holdsworth CD. Antibodies to Saccharomyce cerevisiae in patients with Crohn’s disease and their possible pathogenic importance. Gut 1992;33:1071–1075.

    Article  PubMed  CAS  Google Scholar 

  88. Onderdonk AB, Franklin ML, Cisneros RL. Production of experimental ulcerative colitis in gnotobiotic guinea pigs with simplified microflora. Infect Immun 1981;32:225–231.

    PubMed  CAS  Google Scholar 

  89. Sadlack B, Mertz H, Schorle H, et al. Ulcerative colitis-like disease in mice with a disrupted inter-leukin-2 gene. Cell 1993;75:253–261.

    Article  PubMed  CAS  Google Scholar 

  90. Chadwick VS, Anderson RP. Microorganisms and their products in inflammatory bowel disease. In: MacDermott RP, Stenson WF, eds. Inflammatory Bowel Disease. New York: Elsevier, 1992:241–258.

    Google Scholar 

  91. Sartor R. Role of intestinal microflora in initiation and perpetuation of inflammatory bowel disease. Can J Gastroenterol 1990;4:271–277.

    Google Scholar 

  92. Podolsky DK, Isselbacher KJ. Glycoprotein composition of colonic mucosa. Specific alterations in ulcerative colitis. Gastroenterology 1984;87:991–998.

    PubMed  CAS  Google Scholar 

  93. Raouf A, Parker N, Ryder S, et al. Ion exchange chromatography of purified colonic glycoproteins in inflammatory bowel disease: absence of a selective subclass defect. Gut 1991;32:1139–1145.

    Article  PubMed  CAS  Google Scholar 

  94. Rhodes JM, Black RR, Savage A. Altered lectin binding by colonie epithelial glycoconjugates in ulcerative colitis and Crohn’s disease. Dig Dis Sci 1988;33:1359–1363.

    Article  PubMed  CAS  Google Scholar 

  95. Glassman M, Newman L, Berezin S, et al. Cow’s milk protein sensitivity during infancy in patients with inflammatory bowel disease. Am J Gastroenterol 1990;85:838–840.

    PubMed  CAS  Google Scholar 

  96. Elson C. The immunology of inflammatory bowel disease. In: Kirsner J, Shorter R, eds. Inflammatory Bowel Disease. 3rd ed. Philadelphia: Lea & Febiger, 1988:97–164.

    Google Scholar 

  97. Mayberry J, Rhodes J, Newcombe R. Increased sugar consumption in Crohn’s disease. Digestion 1980;20:323–326.

    Article  PubMed  CAS  Google Scholar 

  98. Thornton J, Emmett P, Heaton K. Diet and Crohn’s disease: characteristics of the pre-illness habit. Br Med J 1979;2:762–764.

    Article  PubMed  CAS  Google Scholar 

  99. Boyko E, Perera D, Koepsell T, et al. Coffee and alcohol use and the risk of ulcerative colitis. Am J Gastroenterol 1989;84:530–534.

    PubMed  CAS  Google Scholar 

  100. Strobel C, Byrne W, Ament M. Home parenteral nutrition in children with Crohn’s disease: an effective management alternative. Gastroenterology 1979;77:272–279.

    PubMed  CAS  Google Scholar 

  101. Riordan AM, Hunter JO, Cowan RE, et al. Treatment of active Crohn’s disease by exclusion diet: East Anglian multicentre controlled trial. Lancet 1993;342:1131–1134.

    Article  PubMed  CAS  Google Scholar 

  102. Rigaud D, Cosnes J, LeQuintrec Y, et al. Controlled trial comparing two types of enterai nutrition in treatment of active Crohn’s disease: elemental v polymeric diet. Gut 1991;32:1492–1497.

    Article  PubMed  CAS  Google Scholar 

  103. Royall D, Jeejeebhoy KN, Baker JP, et al. Comparison of amino acid vs peptide based enterai diets in active Crohn’s disease: clinical and nurtitional outcome. Gut 1994;35:783–787.

    Article  PubMed  CAS  Google Scholar 

  104. Belluzzi A, Brignola C, Campieri M, et al. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med 1996;334:1557–1560.

    Article  PubMed  CAS  Google Scholar 

  105. Scheppach W, Loges C, Bartram P, et al. Effect of free glutamine and alanyl glutamine dipeptide on mucosal proliferation of the human ileum and colon. Gastroenterology 1994;107:429–434.

    PubMed  CAS  Google Scholar 

  106. Scheppach W, Sommer H, Kirchner T, et al. Effect of butyrate enemas on the colonie mucosa in distal ulcerative colitis. Gastroenterology 1992;103:51–56.

    PubMed  CAS  Google Scholar 

  107. Roediger WEW. Bacterial short-chain fatty acids and mucosal diseases of the colon. Br J Surg 1988;75:346–348.

    Article  PubMed  CAS  Google Scholar 

  108. Harig J, Soergel K, Komorowski R, et al. Treatment of diversion colitis with short-chain fatty acid irrigation. N Engl J Med 1989;320:23–28.

    Article  PubMed  CAS  Google Scholar 

  109. Wischmeyer P, Pemberton J, Phillips S. Chronic pouchitis after ileal pouch-anal anastamosis: responses to butyrate and glutamine suppositories in a pilot study. Mayo Clin Proc 1993;68:978–981.

    Article  PubMed  CAS  Google Scholar 

  110. Winter HS, Crum PM, King NW, et al. Expression of immune sensitization to epithelial cell-associated components in the cotton-top tamarin: a model of chronic ulcerative colitis. Gastroenterology 1989;97:1057–1082.

    Google Scholar 

  111. Elson C, Sartor R, Tennyson G, et al. Experimental models of inflammatory bowel disease. Gastroenterology 1995;109:1344–1367.

    Article  PubMed  CAS  Google Scholar 

  112. Mayer L. Mucosal immune system in inflammatory bowel disease. In: MacDermott RP, Stenson WF, eds. Inflammatory Bowel Disease. New York: Elsevier, 1992:53–75.

    Google Scholar 

  113. Broberger O, Perlmann P. Autoantibodies in human ulcerative colitis. J Exp Med 1959;110:657–674.

    Article  PubMed  CAS  Google Scholar 

  114. Perlmann P, Hammarstrom S, Lagercrantz R, et al. Autoantibodies to colon in rats and human ulcerative colitis: cross reactivity with Escherichia coli 0:14. Proc Soc Biol Med 1967;125:975–980.

    CAS  Google Scholar 

  115. Tabaqchali S, O’Donaghue DP, Bettelheim KA. Esherichia coli antibodies in patients with inflammatory bowel disease. Gut 1978;19:108–113.

    Article  PubMed  CAS  Google Scholar 

  116. Knoflach P, Park B, Cunningham R, et al. Serum antibodies to cow’s milk proteins in ulcerative colitis and Crohn’s disease. Gastroenterology 1987;92:479–485.

    PubMed  CAS  Google Scholar 

  117. Korsmeyer S, Strickland RG, Wilson ID, et al. Serum lymphocytotoxic and lymphocytophilic antibody activity in inflammatory bowel disease. Gastroenterology 1974;67:578–583.

    PubMed  CAS  Google Scholar 

  118. MacDermott RP, Nash GS, Bertovich MJ, et al. Alterations of IgM, IgG, and IgA synthesis and secretion by peripheral blood and intestinal mono-nuclear cells from patients with ulcerative colitis and Crohn’s disease. Gastroenterology 1981;81:844–852.

    PubMed  CAS  Google Scholar 

  119. Scott MG, Nahm MH, Macke K, et al. Spontaneous secretion of IgG subclasses by intestinal mono-nuclear cells: differences between ulcerative colitis, Crohn’s disease, and controls. Clin Exp Immunol 1986;66:209–215.

    PubMed  CAS  Google Scholar 

  120. Kett K, Rognum TO, Brandtzaeg P. Mucosal subclass distribution of immunoglobulin G-producing cells is different in ulcerative colitis and Crohn’s disease of the colon. Gastroenterology 1987;93:919–924.

    PubMed  CAS  Google Scholar 

  121. Das KM, Dubin R, Nagai T. Isolation and characterization of colonic tissue-bound antibodies from patients with idiopathic ulcerative colitis. Proc Natl Acad Sci USA 1978;75:4528–4532.

    Article  PubMed  CAS  Google Scholar 

  122. Bhagat S, Das K. A shared and unique epitope in the human colon, eye, and joint detected by a monoclonal antibody. Gastroenterology 1994;107:103–108.

    PubMed  CAS  Google Scholar 

  123. Das KM, Vecchi M, Sakamaki S. A shared and unique epitope (s) on human colon, skin, and biliary epithelium detected by a monoclonal antibody. Gastroenterology 1990;98:464–469.

    PubMed  CAS  Google Scholar 

  124. Takahashi F, Das KM. Isolation and characterization of a colonie autoantigen specifically recognized by colon tissue-bound immunoglobulin G from idiopathic ulcerative colitis. J Clin Invest 1985;76:311–318.

    Article  PubMed  CAS  Google Scholar 

  125. Das KM, Dasgupta A, Mandai A, et al. Autoimmunity to cytoskeletal protein tropomyosin. A clue to the pathogenetic mechanisms for ulcerative colitis. J Immunol 1993;150:2487–2493.

    PubMed  CAS  Google Scholar 

  126. Halstensen TS, Das KM, Brandtzaeg P. Epithelial deposits of immunoglobulin Gl and activated complement colocalise with the Mr 40kD putative autoantigen in ulcerative colitis. Gut 1993;34:650–657.

    Article  PubMed  CAS  Google Scholar 

  127. Biancone L, Mandai A, Yang H, et al. Production of immunoglobulin G and Gl antibodies to cytoskeletal protein by lamina propria cells in ulcerative colitis. Gastroenterology 1995;109:3–12.

    Article  PubMed  CAS  Google Scholar 

  128. Cantrell M, Prindiville T, Gershwin ME. Autoantibodies to colonie cells and subcellular fractions in inflammatory bowel disease: do they exist? J Autoimmunity 1990;3:307–320.

    Article  CAS  Google Scholar 

  129. Hodgson H, Wands J, Isselbacher K. Decreased suppressor cell activity in inflammatory bowel disease. Clin Exp Immunol 1978;32:451–458.

    PubMed  CAS  Google Scholar 

  130. Holdstock G, Chastenay B, Kravitt E. Increased suppressor cell activity in inflammatory bowel disease. Gut 1981;22:1025–1030.

    Article  PubMed  CAS  Google Scholar 

  131. Ginsburg C, Falchuk Z. Defective autologous mixed-lymphocyte reaction and suppressor cell generation in patients with inflammatory bowel disease. Gastroenterology 1982;83:1–9.

    PubMed  CAS  Google Scholar 

  132. MacDermott RP, Bragdon MJ, Kodner IJ, et al. Deficient cell-mediated cytotoxicity and hyporespon-sivenss to interferon and mitogen lectin by inflammatory bowel disease peripheral blood and intestinal mononuclear cells. Gastroenterology 1986;90:6–11.

    PubMed  CAS  Google Scholar 

  133. Shanahan F, Leman B, Deem R, et al. Enhanced peripheral blood T-cell cytotoxicity in inflammatory bowel disease. J Clin Immunol 1989;9:55–64.

    Article  PubMed  CAS  Google Scholar 

  134. Selby WS, Janossy G, Bofill M, et al. Intestinal lymphocyte subpopulations in inflammatory bowel disease: an analysis by immunohistological and cell isolation technique. Gut 1984;25:32–40.

    Article  PubMed  CAS  Google Scholar 

  135. Fukushima K, Masuda T, Ohtani H, et al. Immu-nohistochemical characterization, distribution, and ultrastructure of lymphocytes bearing T-cell receptor gd in inflammatory bowel disease. Gastroenterology 1991;101:670–678.

    PubMed  CAS  Google Scholar 

  136. Gulwani-Akolkar B, Akolkar P, McKinley M, et al. Crohn’s disease is accompanied by changes in the CD4+, but not CD8+, T cell receptor Vβ repertoire of lamina propria lymphocytes. Clin Immunol Immunopathol 1995;77:95–106.

    Article  PubMed  CAS  Google Scholar 

  137. Fiocchi C, Battisto JR, Farmer RG. Studies on isolated gut mucosal lymphocytes in inflammatory bowel disease. Detection of activated T cells and enhanced proliferation to Staphylococcus areus and lipolysaccharides. Dig Dis Sci 1981;26:728–736.

    Article  PubMed  CAS  Google Scholar 

  138. Matsuura T, West GA, Youngman KR, et al. Immune activation genes in inflammatory bowel disease. Gastroenterology 1993;104:448–458.

    PubMed  CAS  Google Scholar 

  139. Schreiber S, MacDermott RP, Raedler A, et al. Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology 1991;101:1020–1030.

    PubMed  CAS  Google Scholar 

  140. Kusugami K, Youngman KR, West GA, et al. Intestinal immune reactivity to interleukin 2 differs among Crohn’s disease, ulcerative colitis and control. Gastroenterology 1989;97:1–9.

    PubMed  CAS  Google Scholar 

  141. Mayer L, Shlien R. Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med 1987;166:1471–1483.

    Article  PubMed  CAS  Google Scholar 

  142. Watanabe M, Ueno Y, Yajima T, et al. Interleukin-7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 1995;95:2945–2953.

    Article  PubMed  CAS  Google Scholar 

  143. Jung H, Eckmann L, Yang S-K, et al. A distinct array of proinflammatory cytokines is expressed in human colonie epithelial cells in response to bacterial invasion. J Clin Invest 1995;95:55–65.

    Article  PubMed  CAS  Google Scholar 

  144. Mayer L, Eisenhardt D. Lack of induction of suppressor T cells by intestinal epithelial cells from patients with inflammatory bowel disease. J Clin Invest 1990;86:1255–1260.

    Article  PubMed  CAS  Google Scholar 

  145. Musso A, Ina K, Fiocchi C. Extracellular matrix (ECM) from inflammatory bowel disease (IBD) displays enhanced adhesiveness for T-cells (abstract). Gastroenterology 1996;110:A977.

    Google Scholar 

  146. Ina K, Binion D, West G, et al. Secretion of soluble factors and phagocytosis by intestinal fibroblasts regulate T-cell apoptosis (abstract). Gastroenterology 1995;108:A841.

    Article  Google Scholar 

  147. Binion D, West G, Ina K, et al. Analysis of human intestinal microvascular endothelial cell activation: enhanced leukocyte binding capacity in inflammatory bowel disease, submitted.

    Google Scholar 

  148. Fiocchi C. Cytokines in Inflammatory Bowel Disease. Austin, Texas: R.G. Landes Company, 1996.

    Google Scholar 

  149. Fiocchi C, Hilfiker ML, Youngman KR, et al. Inter-leukin 2 activity of human intestinal mucosal mono-nuclear cells. Decreased levels in inflammatory bowel disease. Gastroenterology 1984;86:734–742.

    PubMed  CAS  Google Scholar 

  150. Mullin GE, Lazenby AJ, Harris ML, et al. Increased interleukin-2 messenger RNA in the intestinal mucosal lesions of Crohn’s disease but not ulcerative colitis. Gastroenterology 1992;102:1620–1627.

    PubMed  CAS  Google Scholar 

  151. Matsuura T, West GA, Klein JS, et al. Soluble inter-leukin 2, CD8 and CD4 receptors in inflammatory bowel disease. A comparative study of peripheral blood and intestinal mucosal levels. Gastroenterology 1992;102:2004–2006.

    Google Scholar 

  152. Fuss I, Neurath M, Boirivant M, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP manifest increased secretion of IFN-γ, whereas ulerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996;157:1261–1270.

    PubMed  CAS  Google Scholar 

  153. West G, Matsuura T, Levine A, et al. Interleukin-4 in inflammatory bowel disease and mucosal immune reactivity. Gastroenterology 1996;110:1683–1695.

    Article  PubMed  CAS  Google Scholar 

  154. Schreiber S, Heinig T, Thiele HG, et al. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology 1995;108:1434–1444.

    Article  PubMed  CAS  Google Scholar 

  155. Schreiber S, Heinig T, Panzer U, et al. Impaired response of activated mononuclear phagocytes to interleukin 4 in inflammatory bowel disease. Gastroenterology 1995;108:21–33.

    Article  PubMed  CAS  Google Scholar 

  156. Van Deventer S, Elson C, Fedorak R, and the IL-10 cooperative study group. Safety, tolerance, pharma-cokinetics, and pharmacodynamics of recombinant interleukin-10 (SCH 5200) in patients with steroid refractory Crohn’s disease (abstract). Gastroenterology 1996;110:A1034.

    Google Scholar 

  157. Ligumsky M, Simon PL, Karmeli F, et al. Role of interleukin 1 in inflammatory bowel disease-enhanced production during active disease. Gut 1990;31:686–689.

    Article  PubMed  CAS  Google Scholar 

  158. Mahida YR, Kurlak L, Gallagher A, et al. High circulating levels of interleukin 6 in active Crohn’s disease but not ulcerative colitis. Gut 1991;32:1531–1534.

    Article  PubMed  CAS  Google Scholar 

  159. Stevens C, Walz G, Singaram C, et al. Tumor necrosis factor-α, interleukin-1β, and interleukin-6 expression in inflammatory bowel disease. Dig Dis Sci 1992;37:818–826.

    Article  PubMed  CAS  Google Scholar 

  160. Reinecker HC, Loh EY, Ringler DJ, et al. Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa. Gastroenterology 1995;108:40–50.

    Article  PubMed  CAS  Google Scholar 

  161. Izutani R, Loh EY, Reinecker HC, et al. Increased expression of interleukin-8 mRNA in ulcerative colitis and Crohn’s disease mucosa and epithelial cells. Inflammatory Bowel Diseases 1995;1:37–47.

    Google Scholar 

  162. Braegger CP, Nicholls S, Murch SH, et al. Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet 1992;339:89–91.

    Article  PubMed  CAS  Google Scholar 

  163. Van Dulleman H, Van Deventer S, Hommes D, et al. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 1995;109:129–135.

    Article  Google Scholar 

  164. Stenson W. Arachidonic acid metabolites in inflammatory bowel disease. In: Fiocchi C, ed. Cytokines in Inflammatory Bowel Disease. Austin: R.G. Landes, 1996:157–176.

    Google Scholar 

  165. Sharon P, Stenson WF. Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology 1984;86:453–460.

    PubMed  CAS  Google Scholar 

  166. Shannon VR, Stenson WF, Holtzman MJ. Induction of epithelial arachidonate 12-lipoxygenase at active sites of inflammatory bowel disease. Am J Physiol 1993;264:G104–G111.

    PubMed  CAS  Google Scholar 

  167. Lauritsen K, Laursen LS, Bukhave K, et al. In vivo profiles of eicosanoids in ulcerative colitis, Crohn’s colitis, and Clostridium difficile colitis. Gastroenterology 1988;95:11–17.

    PubMed  CAS  Google Scholar 

  168. Dignass A, Podolsky D. Peptide growth factors in inflammatory bowel disease. In: Fiocchi C, ed. Cytokines in Inflammatory Bowel Disease. Austin: R.G. Landes, 1996:137–155.

    Google Scholar 

  169. Zeeh J, Procaccino F, Hoffman P, et al. Keratinocyte growth factor ameliorates mucosal injury in an experimental model of colitis in rats. Gastroenterology 1996;110:1077–1083.

    Article  PubMed  CAS  Google Scholar 

  170. Finch P, Pricolo V, Wu A, et al. Increased expression of keratinocyte growth factor messenger RNA associated with inflammatory bowel disease. Gastroenterology 1996;110:441–451.

    Article  PubMed  CAS  Google Scholar 

  171. Wright NA, Poulsom R, Stamp G, et al. Trefoil peptide gene expression in gastrointestinal epithelial cells in inflammatory bowel disease. Gastroenterology 1993;194:12–20.

    Google Scholar 

  172. Babyatsky M, Rossiter G, Podolsky D. Expression of transforming growth factor α and β in colonie mucosa in inflammatory bowel disease. Gastroenterology 1996;110:975–984.

    Article  PubMed  CAS  Google Scholar 

  173. Koizumi M, King N, Lobb R, et al. Expression of vascular adhesion molecules in inflammatory bowel disease. Gastroenterology 1992;103:840–847.

    PubMed  CAS  Google Scholar 

  174. Malizia G, Calabrese A, Cottone M, et al. Expression ofleukocyte adhesion molecules by mucosal mono-nuclear phagocytes in inflammatory bowel disease. Gastroenterology 1991;100:150–159.

    PubMed  CAS  Google Scholar 

  175. Yacyshyn BR, Lazarovits A, Tsai V, et al. Crohn’s disease, ulcerative colitis, and normal intestinal lymphocytes express integrins in dissimilar patterns. Gastroenterology 1994;107:1364–1371.

    PubMed  CAS  Google Scholar 

  176. Palmen M, Dijkstra C, VanderEnde M, et al. Anti-CD11b/CD18 antibodies reduce inflammation in acute colitis in rats. Clin Exp Immunol 1995;101:351–356.

    PubMed  CAS  Google Scholar 

  177. Podolsky DK, Lobb R, King N, Benjamin CD, Pepinsky B, Seghal P, et al. Attenuation of colitis in the cotton-top tamarin by anti-alpha4 integrin monoclonal antibody. J Clin Invest 1993;92:372–380.

    Article  PubMed  CAS  Google Scholar 

  178. Simmonds NJ, Allen RE, Stevens TRJ, Niall R, Someren MV, et al. Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology 1992;103:186–196.

    PubMed  CAS  Google Scholar 

  179. Boughton-Smith NK, Evans SM, Hawkey CJ, Cole AT, Balsitis M, et al. Nitric oxide synthase activity in ulcerative colitis and Crohn’s disease. Lancet 1993;342:338–340.

    Article  PubMed  CAS  Google Scholar 

  180. Buffington G, Doe W. Depleted mucosal antioxidant defenses in inflammatory bowel disease. Free Radical Biol Med 1995;19:911–918.

    Article  Google Scholar 

  181. Yamada T, Grisham M. Pathogenesis of tissue injury: role of reactive metabolites of oxygen and nitrogen. In: Targan S, Shanahan F, eds. Inflammatory Bowel Disease: from Bench to Bedside. Baltimore: Williams & Wilkins, 1994:133–150.

    Google Scholar 

  182. Stanisz A. Neuronal factors modulating immunity. Neuroimmunomodulation 1994;1:217–230.

    Article  PubMed  CAS  Google Scholar 

  183. Reichlin S. Neuroendocrine-immune interactions. N Engl J Med 1993;329:1245–1253.

    Article  Google Scholar 

  184. Kubota Y, Petras RE, Ottaway CA, et al. Colonic vasoactive intestinal peptide nerves in inflammatory bowel disease. A digitized morphometric immu-nohistochemical study. Gastroenterology 1992;102:1242–1251.

    PubMed  CAS  Google Scholar 

  185. Mazumdar S, Das KM. Immunohistochemical localization of vasoactive intestinal peptide and substance P in the colon from normal subjects and patients with inflammatory bowel disease. Am J Gastroenterol 1992;87:176–181.

    PubMed  CAS  Google Scholar 

  186. Bjorck S, Dahlstrom A, Ahlman H. Topical treatment of ulcerative proctitis with lidocaine. Scand J Gastroenterol 1989;24:1061–1072.

    Article  PubMed  CAS  Google Scholar 

  187. Strober W. Animal models of inflammatory bowel disease-an overview. Dig Dis Sci 1985;30:3S–10S.

    Article  PubMed  CAS  Google Scholar 

  188. Stenson WF. Animal models of inflammatory bowel disease. In: Targan SR, Shanahan F, eds. Inflammatory Bowel Disease. From Bench to Bedside. Baltimore: Williams & Wilkins, 1994:180–192.

    Google Scholar 

  189. Sartor RB. Insights into the pathogenesis of inflammatory bowel diseases provided by new rodent models of spontaneous colitis. Inflammatory Bowel Diseases 1995;1:64–75.

    Google Scholar 

  190. Yamada T, Grisham M. Role of neutrophil-derived oxidants in the pathogenesis of intestinal inflammation. Klin Wochenschr 1991;69:988–994.

    Article  PubMed  CAS  Google Scholar 

  191. Sartor RB, Bond TM, Schwab JH. Systemic uptake and intestinal inflammatory effects of luminal bacterial cell wall polymers in rats with acute colonie injury. Infect Immun 1988;56:2101–2108.

    PubMed  CAS  Google Scholar 

  192. Morris G, Beck P, Herridge M, et al. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 1989;96:795–803.

    PubMed  CAS  Google Scholar 

  193. Beagley K, Black C, Elson C. Strain differences in susceptibility to TNBS-induced colitis (abstract). Gastroenterology 1991;100:A560.

    Google Scholar 

  194. Cooper H, Murthy S, Shah R, et al. Clinico-pathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993;69:238–249.

    PubMed  CAS  Google Scholar 

  195. Okayasu I, Hatakeyama S, Yamada M, et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990;98:694–702.

    PubMed  CAS  Google Scholar 

  196. Yamada M, Ohkusa T, Okayasu I. Occurrence of dysplasia and adenocarcinoma after experimental chronic ulcerative colitis in hamsters induced by dextran sulphate sodium. Gut 1992;33:1521–1527.

    Article  PubMed  CAS  Google Scholar 

  197. Sartor RB, Cromartie WJ, Powell DW, et al. Granulomatous enterocolitis induced in rats by purified bacterial cell wall fragments. Gastroenterology 1985;89:587–595.

    PubMed  CAS  Google Scholar 

  198. Sartor R. Animal models of intestinal inflammation: Relevance to inflammatory bowel disease. In: MacDermott R, Stenson W, eds. Inflammatory Bowel Disease. New York: Elsevier, 1992:337–353.

    Google Scholar 

  199. McCall RD, Haskill S, Zimmermann EM, et al. Tissue interleukin-1 and interleukin-1 receptor antagonist expression in enterocolitis in resistant and susceptible rats. Gastroenterology 1994;106:960–972.

    PubMed  CAS  Google Scholar 

  200. Chalifoux L, Bronson R. Colonie adenocarcinoma associated with chronic colitis in cotton top marmosets, Sanguinis oedipus. Gastroenterology 1981;80:942–946.

    PubMed  CAS  Google Scholar 

  201. Wood J, Peck O, Sharma H, et al. Captivity promotes colitis in the cotton-top tamarin (Sanguinis oedipus) (abstract). Gastroenterology 1990;98:A480.

    Google Scholar 

  202. Sundberg JP, Elson CO, Bedigian H, et al. Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology 1994;107:1726–1735.

    PubMed  CAS  Google Scholar 

  203. Hammer RE, Maika SD, Richardson JA, et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 1990;63:1099–1112.

    Article  PubMed  CAS  Google Scholar 

  204. Mombaerts P, Mizoguchi E, Grusby MG, et al. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 1993;75:275–282.

    Article  CAS  Google Scholar 

  205. Rudolph U, Finegold M, Rich S, et al. Ulcerative colitis and adenocarcinoma of the colon in Gαi2-deficient mice. Nature Genetics 1995;10:143–150.

    Article  PubMed  CAS  Google Scholar 

  206. Hermiston M, Gordon J. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 1995;270:1203–1207.

    Article  PubMed  CAS  Google Scholar 

  207. Baribault H, Penner L, Iozzo R. Colorectal hyper-plasia and inflammation in keratin 8-deficient FVB/N mice. Genes & Dev 1994;8:2964–2973.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Katz, J.A., Fiocchi, C. (1999). Pathogenesis. In: Michelassi, F., Milsom, J.W. (eds) Operative Strategies in Inflammatory Bowel Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1396-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1396-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7130-7

  • Online ISBN: 978-1-4612-1396-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics