Skip to main content

Finding the Density of a Membrane from Nodal Lines

  • Conference paper
Inverse Problems in Wave Propagation

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 90))

Abstract

We solve an inverse nodal problem for a rectangular membrane using two different algorithms, the ratio method and the method of parameter identification. The algorithms use nodal positions and the corresponding natural frequencies to construct a piecewise constant approximation to the density distribution of the membrane. Both algorithms are numerically implemented using numerically simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akin, J.E., Application and Implementation of Finite Element Methods, Academic Press, New York, 1982.

    MATH  Google Scholar 

  2. Baehmann, P.L., Automated Finite Element Modeling and Simulation, Ph.D. thesis, Rensselaer Polytechnic Institute, 1989.

    Google Scholar 

  3. Barcilon, V., “A two-dimensional inverse eigenvalue problem.” Inverse Problems, 6(1990), pp. 11–20.

    Article  MathSciNet  MATH  Google Scholar 

  4. Coleman, C.F. and J.R. McLaughlin, “Solution of the inverse spectral problem for an impedance with integrable derivative.” Part I. Comm. Pure and Appl. Math., 46(1993), pp. 145–184.

    Article  MathSciNet  MATH  Google Scholar 

  5. Coleman, C.F. and J.R. McLaughlin, “Solution of the inverse spectral problem for an impedance with integrable derivative.” Part II. Comm. Pure and Appl. Math., 46(1993), pp. 185–212.

    Article  MathSciNet  MATH  Google Scholar 

  6. Gel’fand, I.M. and B.M. Levitan, “On the determination of a differential equation from its spectrum.” Ivz. Akad. Nauk SSSR Ser. Math., 15 (1951), pp. 309–360; Amer. Math. Trans., 1 (1955), pp. 233-304.

    MathSciNet  MATH  Google Scholar 

  7. Gartland, E.C., Jr., “Accurate approximation of eigenvalues and zeros of selected eigenfunctions of regular Sturm-Liouville problems.” Mathematics of Computation, 42(1984), pp. 427–469.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gladwell, G.M.L., Inverse Problems in Vibration, Martinus Nijhoff Publishers, Boston, 1986.

    Book  MATH  Google Scholar 

  9. Golub, G.H. and C.F. Van Loan, Matrix Computations, second edition, Johns Hopkins University Press, Baltimore, 1989.

    MATH  Google Scholar 

  10. Groetsch, C.W., Inverse Problems in the Mathematical Sciences, Vieweg, Braunschweig, 1993.

    MATH  Google Scholar 

  11. Hald, O.H., “Discontinuous inverse eigenvalue problems.” Comm. Pure and Appl. Math., 37(1984), pp. 539–577.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hald, O.H. and J.R. McLaughlin, “Inverse nodal problems: finding the potential from nodal lines.” AMS Memoir, January 1996.

    Google Scholar 

  13. Hald, O.H. and J.R. McLaughlin, “Inverse problems using nodal position data — uniqueness results, algorithms and bounds”, Proceedings of the Centre for Mathematical Analysis, edited by R.S. Anderson and G.N. Newsam, Australian National University, 17(1988), pp. 32–59.

    Google Scholar 

  14. Hald, O.H. and J.R. McLaughlin, “Solutions of inverse nodal problems.” Inverse Problems, 5(1989), pp. 307–347.

    Article  MathSciNet  MATH  Google Scholar 

  15. Knobel, R. and J.R. McLaughlin, “A reconstruction method for a two-dimensional inverse eigenvalue problem.” ZAMP, 45(1994), 794–826.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurylev, Y.V., “To the Holmgren-John uniqueness theorem for the wave equation with piecewise analytic coefficients.” Zap. Nauchn. Semin. POM1, (in Russian), 203(1992), pp. 113–136.

    Google Scholar 

  17. Lee, C. and J.R. McLaughlin, “Numerical solution of an inhomogeneous membrane eigenvalue problem using a spectral method.” To appear.

    Google Scholar 

  18. Lee, C. and J.R. McLaughlin, “Two algorithms for recovering the density of a rectangular membrane from nodal data.” To appear.

    Google Scholar 

  19. McLaughlin, J.R., “Analytical methods for recovering coefficients of a differential equation from spectral data.” SIAM Review, 28(1986), pp. 53–72.

    Article  MathSciNet  MATH  Google Scholar 

  20. McLaughlin, J.R., “Inverse spectral theory using nodal points as data — a uniqueness result.” J.Diff. Eq., 73(1988), pp. 354–362.

    Article  MathSciNet  MATH  Google Scholar 

  21. McLaughlin, J.R. and O.H. Hald, “A formula for finding a potential from nodal lines”, Bulletin Of The American Mathematical Society, 32(1995), pp. 241-247.

    Google Scholar 

  22. Nachman, A., J. Sylvester and G. Ulhmann, “An n-dimensional Borg-Levinson theorem.” Comm. Math. Phys., 115, no. 4 (1988), pp. 595–605.

    Article  MathSciNet  MATH  Google Scholar 

  23. Pöschel, J. and E. Trubowitz, Inverse Spectral Theory, Academic Press, Orlando, 1987.

    MATH  Google Scholar 

  24. Rundell, W. and P.E. Sacks, “Reconstruction techniques for classical inverse Sturm-Liouville problems.” Math. Corny., 58(1992), pp. 161–183.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rundell, W. and P.E. Sacks, “The reconstruction of Sturm-Liouville operators.” Inverse Problems, 8(1992), pp. 457–482.

    Article  MathSciNet  MATH  Google Scholar 

  26. Szabo, B. and I. Babuška, Finite Element Analysis, Wiley, New York, 1991.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Lee, CJ.A., Mclaughlin, J.R. (1997). Finding the Density of a Membrane from Nodal Lines. In: Chavent, G., Sacks, P., Papanicolaou, G., Symes, W.W. (eds) Inverse Problems in Wave Propagation. The IMA Volumes in Mathematics and its Applications, vol 90. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1878-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1878-4_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7322-6

  • Online ISBN: 978-1-4612-1878-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics