Skip to main content

Bergman Projection in Clifford Analysis

  • Chapter
Clifford Algebras

Part of the book series: Progress in Mathematical Physics ((PMP,volume 34))

Abstract

We study weighted Bergman projections in the monogenic Bergman spaces of the real unit ball \mathbb{B} in ℝ n . We extend results of Forelli—Rudin, Coifman—Rochberg, and Djrbashian to Clifford analysis. The main result is as follows: Let P α be the orthogonal projection from the Hilbert space L 2( \mathbb{B} , Cl 0,n , dV α) onto the subspace of monogenic functions A 2( \mathbb{B} , Cl 0,n , dV α. If p(α + 1) > β + 1 with 1 ≤ p < ∞ and α,β > - 1, then the operator P α : L p ( \mathbb{B} ,Cl 0, n , dV β) → A p( \mathbb{B} ,Cl 0,n , dV β is bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Axler, R Bourdon, and W. Ramey, Harmonic Function Theory, Graduate Texts in Math. 137, Springer-Verlag, New York, 1992

    MATH  Google Scholar 

  2. F. Brackx, R. Delanghe, and F. Sommen, Clifford Analysis, Research Notes in Mathematics 76. Pitman, Boston, MA, 1982.

    MATH  Google Scholar 

  3. F. Brackx, F. Sommen, and N. Van Acker, Reproducing Bergman kernels in Clifford analysis, Complex Variables Theory Appl. 24 (1994), no. 3–4, 191–204.

    MathSciNet  MATH  Google Scholar 

  4. Coifman R. R. and Rochberg R., Representation theorems for holomorphic and harmonic functions in Lp, Representation theorems for Hardy spaces, Astérisque 77, Soc. Math. France, Paris, 1980, 11–66.

    MathSciNet  MATH  Google Scholar 

  5. D. Constates and R. S. Krausshar, Szegò and polymonogenic Bergman kernels for half-space and strip domains, and single-periodic functions in Clifford analysis, Complex Var. Theory Appl. 47 (2002), no. 4, 349–360.

    MathSciNet  MATH  Google Scholar 

  6. R. Delanghe, On Hilbert modules with reproducing kernel, in Function Theoretic Methods for Partial Differential Equations (Proc. Internat. Sympos., Darmstadt, 1976), Lecture Notes in Math. 561, Springer, Berlin, 1976, pp. 158–170.

    Chapter  Google Scholar 

  7. R. Delanghe and F. Brackx, Hypercomplex function theory and Hilbert modules with reproducing kernel, Proc. London Math. Soc. (3) 37 (1978), no. 3, 545–576.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Delanghe, F. Sommen F., and V. Soucek, Clifford algebra and spinor-valued functions. A function theory for the Dirac operator, Mathematics and its Applications 53, Kluwer Academic Publishers Group, Dordrecht, 1992.

    MATH  Google Scholar 

  9. Djrbashian A., Integral representations for Riesz systems in the unit ball and some applications, Proc. Amer. Math. Soc. 117 (1993), 395–403.

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdélyi A. et al., Higher Transcendental Functions I, McGraw-Hill, New York, 1953.

    MATH  Google Scholar 

  11. F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974/75), 593–602.

    Article  MathSciNet  Google Scholar 

  12. H. Hedenmalm, B. Korenblum, and K. H. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics 199, Springer-Verlag, New York, 2000.

    MATH  Google Scholar 

  13. S. G. Krantz, Function Theory of Several Complex Variables, AMS Chelsea Publishing, Providence, RI, 2001.

    MATH  Google Scholar 

  14. E.D. Rainville, Special Functions, Chelsea Publishing Company, Bronx, New York, 1971.

    MATH  Google Scholar 

  15. M. V. Shapiro and N. L. Vasilevski, On the Bergman kernel function in the Clifford analysis, in Clifford algebras and their applications in mathematical physics, Eds. F. Brackx, R. Delanghe, and H. Serras, Fund. Theories Phys., 55, Kluwer Acad. Publ., Dordrecht, 1993, pp. 183–192.

    Google Scholar 

  16. E. M. Stein and G. Weiss, Generalization of the Cauchy-Riemann equations and representation of the rotation group, Amer. J. Math. 90, 1968, 163–196.

    Article  MathSciNet  MATH  Google Scholar 

  17. Z. Xu" A function theory for the operator D - λ, Complex Variables 16 (1991), 27-42.

    MATH  Google Scholar 

  18. K. Zhu, Operator Theory in Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 139. Marcel Dekker, Inc., New York, 1990.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Boston

About this chapter

Cite this chapter

Ren, G., Malonek, H.R. (2004). Bergman Projection in Clifford Analysis. In: Abłamowicz, R. (eds) Clifford Algebras. Progress in Mathematical Physics, vol 34. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2044-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2044-2_8

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3525-1

  • Online ISBN: 978-1-4612-2044-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics