Skip to main content

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let Ω ⊂ ℂn be a bounded pseudoconvex domain with a smooth boundary. We denote by L 2(Ω) the space of square-integrable functions on Ω and by <Emphasis FontCategory=“NonPropotional”>H</Emphasis>(Ω) the space of square-integrable holomorphic functions on Ω. Let B: L 2(Ω) → <Emphasis FontCategory=”NonPropotional”>(Ω)</Emphasis> denote the Bergman projection operator, which is the orthogonal projection of L 2(Ω) onto <Emphasis FontCategory=”NonPropotional”>(Ω)</Emphasis>. Here we will be concerned with the global regularity of B in terms of Sobolev norms, that is, the question of when B(H S(Ω)) ⊂ H S(Ω) where H s(Ω) denotes the Sobolev space of order s. Of course, if B preserves H S(Ω) locally (i.e., if B(s/loc(Ω)) ⊂ H s loc(Ω)), then B also preserves H s(Ω) globally. Aspects of the local question are very well understood, in particular when Ω is of finite D’Angelo type (see [Cal] and [D’A]). Local regularity can still occur when the D’Angelo type is infinite, as in the examples given in [Chr2] and [K2]. Local regularity fails whenever there is a complex curve V in the boundary of Ω. In that case, if PV, then for given s there exists an fL 2(Ω) such that ζfH S(Ω) for every smooth function ζ with support in a fixed small neighborhood of P and such that ζB(f) ∉ H S(Ω) whenever ζ = 1 in some neighborhood of P. In contrast, global regularity always holds for small s. That is, if Ω is pseudoconvex, then there exists η > 0 such that B(H S(Ω)) ⊂ H S(Ω) for s ⩽ η. Furthermore, there is a series of results showing global regularity under a variety of conditions (see [Ca2], [BC], [Ch], [BS1], and [BS2]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett, David, E., Behavior of the Bergman projection on the Diederich-Fornaess Worm, Acta Math. 168 (1992), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, David, E., Irregularity of the Bergman projection on a smooth bounded domain in2, Ann. of Math. 119 (1984), 431–436.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bell, Steven, R., A duality theorem for harmonic functions, Mich. J. of Math. 29 (1982), 123–128.

    Article  MATH  Google Scholar 

  4. Boas, Harold P. and Straube, Emil J., Sobolev estimates for the \( \bar{\partial } \) -Neumann operator on domains inn admitting a defining function that is plurisubharmonic on the boundary, Math Z. 206 (1991), 81–88.

    Article  MathSciNet  MATH  Google Scholar 

  5. Boas, Harold, P. and Straube, Emil, J., Equivalence of regularity for the Bergman projection and the \( \bar{\partial } \) -Neumann operator, Manuscr. Math. 67 (1990), 25–33.

    Article  MathSciNet  MATH  Google Scholar 

  6. Boas, Harold P. and Straube, Emil J., De Rham cohomology of manifolds containing the points of infinite type, and Sobolev estimates for the \( \bar{\partial } \) -Neumann problem, J. Geom. Anal. 3 (1993), 225–235.

    MathSciNet  MATH  Google Scholar 

  7. Bonami, A. and Charpentier, P., Une estimation Sobolev ½ pour le projecteur de Bergman, C. R. Acad. Sci. Paris 307 (1988), 173–176.

    MathSciNet  MATH  Google Scholar 

  8. Catlin, D., Subelliptic estimates for the \( \bar{\partial } \) -Neumann problem on pseuodoconvex domains, Ann. of Math. 126 (1987), 131–191; Necessary conditions for the subellipticity of the \( \bar{\partial } \) -Neumann problem, Ann. of Math. 117 (1983), 147–171.

    Article  MathSciNet  MATH  Google Scholar 

  9. Catlin, D., Global regularity for the \( \bar{\partial } \) -Neumann problem, Proc. Symp. Pure Math. A.M.S. 41 (1982), 39–49.

    MathSciNet  Google Scholar 

  10. Chen, S.-C., Global regularity of the \( \bar{\partial } \) -Neumann problem in dimension two, Proc. Symp. Pure Math. A.M.S. 52, Part 3 (1991), 55–61.

    Google Scholar 

  11. Christ, M., Global C irregularity of the \( \bar{\partial } \) -Neumann problem for worm domains, J. of A.M.S. 9 (1996), 1171–1185.

    MathSciNet  MATH  Google Scholar 

  12. Christ, M., Superlogarithmic gain implies hypoellipticity, preprint 1997.

    Google Scholar 

  13. D’Angelo, J. P., Real hyper surf aces, orders of contact and applications, Ann. of Math. 115 (1982), 615–637.

    Article  MathSciNet  MATH  Google Scholar 

  14. Diederich, K. and Fornaess, J. E., Pseudoconvex domains: An example with nontrivial Nebenhülle, Math. Ann. 225 (1978), 275–292.

    Article  MathSciNet  Google Scholar 

  15. Diederich, K. and Fornaess, J. E., Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129–147.

    Article  MathSciNet  MATH  Google Scholar 

  16. Folland, G. B. and Kohn, J. J., The Neumann problem for the Cauchy-Riemann complex, Annals of Math. Studies 75, Princeton U. Press, 1972.

    MATH  Google Scholar 

  17. Kiselman, C. O., A study of the Bergman projection on certain Hartogs domains, Proc. Symp. Pure Math. 52, Part 3 (1991), 219–231.

    MathSciNet  Google Scholar 

  18. Kohn, J. J., Global regularity for \( \bar{\partial } \) on weakly pseudoconvex manifolds, Trans. A.M.S. 181 (1973), 273–292.

    MathSciNet  MATH  Google Scholar 

  19. Kohn, J. J., Hypoellipticity of some degenerate subelliptic operators, J. of Fune. Anal. 159 (1998), 203–216.

    Article  MathSciNet  MATH  Google Scholar 

  20. Range, M., A remark on bounded strictly plurisubharmonic exhaustion functions, Proc. A.M.S. 81, No. 2 (1981), 220–222.

    Article  MathSciNet  Google Scholar 

  21. Siu, Y.-T., Non-Hölder property of Bergman projection of worm domain, preprint 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Kohn, J.J. (1999). Quantitative Estimates for Global Regularity. In: Komatsu, G., Kuranishi, M. (eds) Analysis and Geometry in Several Complex Variables. Trends in Mathematics. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2166-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2166-1_6

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7441-4

  • Online ISBN: 978-1-4612-2166-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics