Skip to main content

Cosmic Plasma Fundamentals

  • Chapter
Physics of the Plasma Universe
  • 157 Accesses

Abstract

Plasma consists of electrically charged particles that respond collectively to electromagnetic forces. The charged particles are usually clouds or beams of electrons or ions, or a mixture of electrons and ions, but also can be charged grains or dust particles. Plasma is also created when a gas is brought to a temperature that is comparable to or higher than that in the interior of stars. At these temperatures, all light atoms are stripped of their electrons, and the gas is reduced to its constituent parts: positively charged bare nuclei and negatively charged free electrons. The name plasma is also properly applied to ionized gases at lower temperatures where a considerable fraction of neutral atoms or molecules are present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

a) General

  • Alfvén, H. (1981): Cosmic Plasma (D. Reidel, Dordrecht).

    Google Scholar 

  • Alfvén, H., Fälthammar, C.-G. (1963): Cosmical Electrodynamics (Oxford, London)

    MATH  Google Scholar 

  • Alfvén, H., Antienius, G. (1976): Evolution of the Solar System (NASA Publication SP-345, NASA, Washington D.C.)

    Google Scholar 

  • Bekefi, G. (1966): Radiation Processes in Plasmas (Wiley, New York)

    Google Scholar 

  • Jursa, A.S. (1985): Handbook of Geophysics and the Space Environment (National Technical Information Service, U.S. Department of Commerce, Springfield, VA)

    Google Scholar 

  • Krall, N.A., Trivelpiece, A.W. (1973): Principles of Plasma Physics (McGraw-Hill, New York)

    Google Scholar 

  • Lang, K. (1974): Astrophysical Formulae (Springer, New York, Heidelberg, Berlin)

    Google Scholar 

  • Lui, A.T.Y. (ed.) (1987): Magnetotail Physics (The Johns Hopkins University Press, Baltimore)

    Google Scholar 

  • Lyons, L. R., Williams, D. J. (1984): Quantitative Aspects of Magnetospheric Physics (D. Reidel, Dordrecht)

    Google Scholar 

  • Miller, R. B. (1982): Intense Charged Particle Beams (Plenum, NewYork)

    Google Scholar 

  • Nishida, A. (1988): Magnetospheric Plasma Physics (D. Reidel, Dordrecht, Holland)

    Google Scholar 

  • Priest, E. R. (1985): Solar System Magnetic Fields (D. Reidel, Dordrecht, Holland)

    Google Scholar 

  • Rose, D. J., Clark, M. (1961): Plasmas and Controlled Fusion (MIT Press, Cambridge, MA)

    MATH  Google Scholar 

b)Special

  • Alfvén, H. (1950): Cosmical Electrodynamics (Oxford University Press, New York)

    MATH  Google Scholar 

  • Alfvén, H., Wemholm, O. (1952): “A new type of accelerator,” Aik. För Fys. 15 175

    Google Scholar 

  • Akasofu, S.-I. (1981): “Energy coupling between the solar wind and the magnetosphere”, Space Sci. Rev. 28 121

    Article  ADS  Google Scholar 

  • Bennett, W.H. (1934): “Magnetically self-focussing streams”, Phys. Rev. 45 890

    Article  ADS  Google Scholar 

  • Berlin, A.B., Bulaenko, E.N., Vitkivskii, V.V., Pariiskii, Yu.N., Petrov, Z.E. (1983): “Search for small scale anisotropy of the 3K emission of the universe”, in Abell and Chincarini (eds) Early Evolution of the Universe and its Present Structure (IAU Symposium 104, Kolymbari, Greece), pp.121–124

    Google Scholar 

  • Block, L.P., Fälthammar, C.-G. (1969): “Field-aligned currents and auroral precipitation”, in Atmospheric Emissions, ed. by B.M. McCormac (Van Nostrand Reinhold Company), p. 285

    Google Scholar 

  • Book, D. L. (1987): Plasma Formulary, NRL Publication 0084–4040 (Naval Research Laboratory, Washington DC)

    Google Scholar 

  • Borucki, W. J. (1989): “Planetary lightning: a short review of extraterrestrial lightning characteristics,” in Laboratory and Space Plasmas, ed. by H. Kikuchi (Springer, Berlin, Heidelberg)

    Google Scholar 

  • Bostick, W.H. (1986): “What laboratory-produced plasma structures can contribute to the understanding of cosmic structures both large and small”, IEEE Trans. Plasma Sci. 1 703

    Article  ADS  Google Scholar 

  • Brecker (1984):“The quadrapole anisotropy”, Phys. Today 37

    Google Scholar 

  • Bridle, A.H. (1967): “The spectrum of the radio background between 13 and 404 MHz”, Mon. Not. R. Astro. Soc. 136 219

    ADS  Google Scholar 

  • Brown, W. C., Ness, W. N., Van Allen, J. A. (1963): “Collected papers on the artificial radiation belt from the July 9,1962, nuclear detonation”, J. Geophys. Res. 68 605

    Article  ADS  Google Scholar 

  • Buneman, O., Levy, R.H., Linson, L.M. (1966): “Stability of crossed-field electron beams,” J. Appl. Phys. 37 3203

    Article  ADS  Google Scholar 

  • Chandrasekhar, S. (1961): Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford)

    MATH  Google Scholar 

  • Collins, G.B. (1948): Microwave Magnetrons (McGraw-Hill, New York)

    Google Scholar 

  • Dennis, B., Canfield, R. (1988): Max ’91 (NASA Goddard Space Flight Center, Greenbelt, Maryland)

    Google Scholar 

  • Destler, W.W., Hoeberling, R.F., Kim, H., Bostick, W.H. (1979): “Collective acceleration of carbon ions to 170 MeV,” Appl. Phys. Lett. 35 296

    Article  ADS  Google Scholar 

  • Eastman, T. (1990): “Transistionregions in solar system and astrophysical plasmas,” IEEE Trans. Plasma Sci. 18 18

    Article  ADS  Google Scholar 

  • Faehl, R. J., Godfrey, B. B. (1978): “Collective ion acceleration through temporal modulation of relativistic-electron beam energy,” Phys. Rev. Lett. 40 1137

    Article  ADS  Google Scholar 

  • Fàlthammar, C.-G. (1990): “Electrodynamics of Cosmical Plasmas—Some basic aspects of cosmological importance”, IEEE Trans. Plasma Sci. 18 11

    Article  ADS  Google Scholar 

  • Felch, K.L. (1985): “Introduction to the special issue on high-power microwave generation”, IEEE Trans. on Plasma Sci. 13 361

    Article  Google Scholar 

  • Godfrey, B.B., Thode, L. E. (1975): “Collective ion acceleration via the two-stream instability”, New York Acad. Sci. 251 582

    ADS  Google Scholar 

  • Kaiser, M.L., Desch, M.D. (1984): “Radio emissions from the planets Earth, Jupiter, and Saturn,” Rev. Geophys. and Space Phys. 22 373

    Article  ADS  Google Scholar 

  • Katsouleas, T. (1987): “Introduction to the special issue on plasma-based high-energy accelerators,” IEEE Trans. Plasma Sci. 15 85

    Article  Google Scholar 

  • Luce, J.S. (1975): “Neutrons and radioisotopes produced by collective effect acceleration”, Ann. New York Acad. Sci. 251 217

    ADS  Google Scholar 

  • Moran, P. (1984): “Masers in the nuclei of galaxies”, Nature 310 270

    Article  ADS  Google Scholar 

  • Nahin, P.J. (1988): Oliver Heaviside: Sage in Solitude (IEEE Press, New York)

    Google Scholar 

  • Ness, W.N. (1963): “Collected papers on the artificial radiation belt from the July 9,1962, nuclear detonation” J. Geophys. Res. 68 605

    Article  ADS  Google Scholar 

  • Peratt, A.L. (1985): “A high-power reflex triode microwave source”, IEEE Trans, on Plasma Sci. 13 498

    Article  ADS  Google Scholar 

  • Periiskii, Y.N., Korolkov, D.V. (1986): “Experiment Cold: the first deep sky survey with the Ratan-600 radio telescope”, Sov. Sci. Rev. E. Astrophys. Space Phys. 5 39

    ADS  Google Scholar 

  • Reber, G. (1986): “Intergalactic plasma”, IEEE Trans. Plasma Sci. 14 678

    Article  ADS  Google Scholar 

  • Shannahan, W. R., Faehl, R. J. (1981): “Collective ion acceleration,” Los Alamos National Laboratory Report LA-8961-PR

    Google Scholar 

  • Suess, S. T., Dessler, A. J. (1985): “Probing the local interstellar medium,” Nature 317 702

    Article  ADS  Google Scholar 

  • Willett, J.C., Bailey, J.C., Leteinturier, C., Krider, E.P. (1990): “Lightning electromagnetic radiation field spectra in the interval from 0.2 to 20 MHz, J. Geophys. Res. 95 20,367

    Article  Google Scholar 

  • Yusef-Zadeh, F., Morris, M., Chance, D. (1984): “Large, highly organized radio structures near the galactic centre”, Nature 310 557

    Article  ADS  Google Scholar 

c)Critical Ionization Velocity

  • Alfvén, H. (1942): “On the cosmogony of the solar system”, Stockholms Observatoriums Annaler 1. 14 No. 2

    Google Scholar 

  • Brenning, N., Axnäs, I. (1988): “Critical ionization velocity interactions: Some unsolved problems”, Astrophys. Space Sci. 144 15

    ADS  Google Scholar 

  • Cloutier, P.A., Daniell, R.E., Dessler, A.J., Hill, T.J. (1978): “A cometary ionosphere model for Io”, Astrophys. Space Sci. 55 93

    Article  ADS  Google Scholar 

  • Fahleson, U. (1961): “Experiments with plasma moving through neutral gas”, Phys. Fluids 4 123

    Article  ADS  Google Scholar 

  • Fälthammar, C.-G. (1988): “Laboratory and near-earth space plasma as a key to the plasma universe”, Laser and Particle Beams 6 437

    Article  ADS  Google Scholar 

  • Galeev, A. A. etal(1986): “Critical ionization velocity effects in the inner coma of Comet Halley: measurements by Vega-2”, Geophys. Res. Lett. 13 845

    Article  ADS  Google Scholar 

  • Gold, T., Soter, S. (1976): “Cometary impact and the magnetization of the moon”, Planet. Space Sci. 24 45

    Article  ADS  Google Scholar 

  • Haerendel, G. (1982): “Alfvén’s critical velocity effect tested in space” Zeitschrift für Naturforschung 37a 728

    ADS  Google Scholar 

  • Haerendel, G. (1986): “Plasma flow and critical velocity ionization in cometary comae”, Geophys. Res. Lett. 13 255

    Article  ADS  Google Scholar 

  • Lai, S.T., Murad, E., McNeil, W.J. (1989): “An overview of atomic and molecular processes in critical velocity ionization”, IEEE Trans. Plasma Sci. 17 124

    Article  ADS  Google Scholar 

  • Lindeman, R.A. etal(1974): “The interaction between an impact-produced neutral gas cloud and the solar wind at the lunar surface”, J. Geophys. Res. 79 2287

    Article  Google Scholar 

  • Luhmann, J. (1988): “An assessment of the conditions for critical velocity ionization at the weakly ionized planets”, the XXVIIth COSPAR Meet. Helsinki, Finland, paper XIII. 1.6

    Google Scholar 

  • Petelski, E.F., Fahr, H.J., Ripken, H.W., Brenning, N., Axnäs, I. (1980): “Enhanced interaction of the solar wind and the interstellar neutral gas by virtue of a critical velocity effect”, Astron. Astrophys. 87 20

    ADS  Google Scholar 

  • Petelski, E.F. (1981): “Viability of the critical ionization velocity concept in selected space situations” in Relation Between Laboratory and Space Plasmas, H. Kikuchi, Ed. (D. Reidel, Dordrecht, Holland)

    Google Scholar 

  • Singh, N. (1989): “Magnetic field-aligned plasma expansion in critical ionization velocity space experiments”, IEEE Trans. Plasma Sci. 17 124

    Article  ADS  Google Scholar 

  • Torbert, R. (1988): “Review of ionospheric CIV experiments”, XXVIIth COSPAR Meet. Helsinki, Finland, paper XIII.2.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Peratt, A.L. (1992). Cosmic Plasma Fundamentals. In: Physics of the Plasma Universe. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2780-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2780-9_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7666-1

  • Online ISBN: 978-1-4612-2780-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics