Skip to main content

Bacterial Phosphatases from Different Habitats in a Small, Hardwater Lake

  • Chapter
Microbial Enzymes in Aquatic Environments

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

The significance of alkaline phosphatase (APase) in aquatic environments has been examined extensively in both freshwater and marine systems. Interest in this enzyme historically has been in its capacity as a predictor of the degree of phosphorus (P) limitation in the phytoplankton (Kuenzler and Perras, 1965; Fitzgerald and Nelson, 1966; Healey and Hendzel, 1980; Wetzel, 1981). This predictive capacity, however, has been challenged by several studies because not all APase production in the pelagic zone is by phytoplankton (Stevens and Parr, 1977; Cembella et al., 1984; Jansson et al., 1988). APase hydrolyzes dissolved organic phosphorus compounds (DOP) to an organic moiety and inorganic phosphate (see Figure 13.1, Chapter 13). The hydrolyzed phosphorus is then available for uptake either by the organisms that hydrolyze it or by other organisms (Ammerman and Azam, 1985; see Chapter 2). Because biological production in many lakes has been shown to increase with increased phosphorus inputs, regeneration of phosphorus through APase could increase productivity at times when allochthonous inputs of P are minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, R.D. and D.L. Punch. 1979. Practical considerations in the design of initial velocity enzyme rate assays. pp. 3–22 in Punch, D.L. (editor), Methods in Enzymology, vol. 63. Academic Press, New York.

    Google Scholar 

  • Ammerman, J.W. and F. Azam. 1985. Bacterial 5’-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science 227: 1338–1340.

    Article  PubMed  CAS  Google Scholar 

  • APHA. 1985. Standard Methods For The Examination of Water and Wastewater. American Public Health Association. 1268 pp.

    Google Scholar 

  • Atlas, R.M. and R. Bartha. 1987. Microbial Ecology: Fundamentals and Applications. Benjamin/Cummings, Menlo Park, California. 533 pp.

    Google Scholar 

  • Bengis-Garber, C. and D.J. Kushner. 1982. Role of membrane-bound 5’- nucleotidase in nucleotide uptake by the moderate halophile Vibrio costicola. Journal of Bacteriology 149: 808–815.

    CAS  Google Scholar 

  • Benner, R., Lay, J., K’Nees, K. and R.E. Hodson. 1988. Carbon conversion efficiency for bacterial growth on lignocellulose: implications for detritus-based food webs. Limnology and Oceanography 33: 1514–1526.

    Article  CAS  Google Scholar 

  • Boavida, M.J. and R.T. Heath. 1984. Are the phosphatases released by Daphnia magna components of its food? Limnology and Oceanography 29: 641–645.

    Article  CAS  Google Scholar 

  • Carlton, R.G. and R.G. Wetzel. 1988. Phosphorus flux from lake sediments: effect of epipelic algal oxygen production. Limnology and Oceanography 33: 562–570.

    Article  CAS  Google Scholar 

  • Cembella, A.D., Antia, N.J. and P.J. Harrison. 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: Part 1. CRC Critical Reviews in Microbiology 10: 317–391.

    Article  PubMed  CAS  Google Scholar 

  • Chróst, R.J., Münster, U., Rai, H., Albrecht, D., Witzel, P.K. and J. Overbeck. 1989. Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. Journal of Plankton Research 11: 223–242.

    Article  Google Scholar 

  • Chróst, R.J. and J. Overbeck. 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plußsee (north German eutrophic lake). Microbial Ecology 13: 229–248.

    Article  Google Scholar 

  • Cotner, J.B. 1990. Utilization of dissolved phosphorus compounds by bacteria and algae in lakes. Ph.D. dissertation, University of Michigan. 137 pp.

    Google Scholar 

  • Currie, D.J. and J. Kalff. 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnology and Oceanography 29: 298–310.

    Article  CAS  Google Scholar 

  • Deinema, M.H., Habets, L.H.A., Scholten, J., Turkstra, E. and H.A.A.M. Webers. 1980. The accumulation of polyphosphate in Acinetobacter spp. Federation of European Microbiology Societies, Microbiology Letters 9: 275–279.

    Article  CAS  Google Scholar 

  • Dixon, M. and E.C. Webb. 1979. Enzymes. Academic Press, New York. 1116 pp.

    Google Scholar 

  • Echols, H., Garen, A. and A. Torriani. 1961. Genetic control of repression of alkaline phosphatase in E. coli. Journal of Molecular Biology 3: 425–438.

    CAS  Google Scholar 

  • Fitzgerald, G.P. and T.C. Nelson. 1966. Extractive and enzymatic analyses for limiting or surplus phosphorus in algae. Journal of Phycology 2: 305–309.

    Article  Google Scholar 

  • Gächter, R., Meyer, J.S. and A. Mares. 1988. Contribution of bacteria to release and fix- ation of phosphorus in lake sediments. Limnology and Oceanography 33: 1542–1558.

    Article  Google Scholar 

  • Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. pp. 29–60 in Smith, W.L. and Chanley, M.H. (editors), Culture of Marine Invertebrate Animals. Plenum Press, New York.

    Google Scholar 

  • Haines, E.B. and R.B. Hanson. 1979. Experimental degradation of detritus made from the salt marsh plants Spartina alterniflora Loisel., Salicornia virginica L., and Juncus roemerianus Scheele. Journal of Experimental Marine Biology and Ecology 40: 27–40.

    Article  CAS  Google Scholar 

  • Healey, F.P. and L.L. Hendzel. 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences 37: 442–453.

    Article  CAS  Google Scholar 

  • Heath, R.T. and G.D. Cooke. 1975. The significance of alkaline phosphatase in a eutrophic lake. Verhandlungen der Internationalen Vereinigung fur Theoretische and Angewandte Limnologie 19: 959–965.

    Google Scholar 

  • Jansson, M., Olsson, H. and K. Pettersson. 1988. Phosphatases; origin, characteristics and function in lakes. Hydrobiologia 170: 157–175.

    Article  CAS  Google Scholar 

  • Jones, J.G. 1972. Studies on freshwater bacteria: association with algae and alkaline phosphatase activity. Journal of Ecology 60: 59–75.

    Article  CAS  Google Scholar 

  • Kuenzler, E.J. and J.P. Perras. 1965. Phosphatases of marine algae. Biological Bulletin 128: 271–284.

    Article  Google Scholar 

  • Kulaev, I.S. 1979. The Biochemistry Of Inorganic Polyphosphates. Wiley and Sons, New York. 225 pp.

    Google Scholar 

  • Losee, R.F. and R.G. Wetzel. 1988. Water movement within submersed littoral vegetation. Verhandlungen der Internationalen Vereinigung far Theoretische and Angewandte Limnologie 23: 62–66.

    Google Scholar 

  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and R.J. Randall. 1951. Protein measure-ment with the folin phenol reagent. Journal of Biological Chemistry 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Malamy, M.H. and B.L. Horecker. 1964. Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation. Biochemistry 3: 1889–1893.

    Article  PubMed  CAS  Google Scholar 

  • McComb, R.B., Bowers, G.N. and S. Posen. 1979. Alkaline Phosphatases. Plenum Press, New York. 986 pp.

    Google Scholar 

  • McRoy, C.P., Barsdate, R.J. and M. Nebert. 1972. Phosphorus cycling in an eelgrass (Zostera marina L.) ecosystem. Limnology and Oceanography 17: 58–67.

    Article  CAS  Google Scholar 

  • Merril, C.R., Goldman, D., Sedman, S.A. and M.H. Ebert. 1981. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211: 1437.

    Article  PubMed  CAS  Google Scholar 

  • Moeller, R.E., Burkholder, J.M. and R.G. Wetzel. 1988. Significance of sedimentary phosphorus to a rooted submersed macrophyte (Najas flexilis (Willd.) Rostk. and Schmidt) and its algal epiphytes. Aquatic Botany 32: 261–281.

    Article  Google Scholar 

  • Mortimer, C.H. 1941. The exchange of dissolved substances between mud and water in lakes, Parts 1 and 2. Journal of Ecology 29: 280–329.

    Article  CAS  Google Scholar 

  • Mortimer, C.H. 1942. The exchange of dissolved substances between mud and water in lakes, Parts 3 and 4. Journal of Ecology 30: 147–201.

    Article  CAS  Google Scholar 

  • Newell, R.C., Linley, E.A.S. and M.I. Lucas. 1983. Bacterial production and carbon conversion based on saltmarsh plant debris. Estuarine and Coastal Shelf Sciences 17: 405–419.

    Article  Google Scholar 

  • Otsuki, A. and R.G. Wetzel. 1972. Coprecipitation of phosphate with carbonates in a marl lake. Limnology and Oceanography 17: 763–767.

    Article  CAS  Google Scholar 

  • Pettersson, K. and M. Jansson. 1978. Determination of phosphatase activity in lake water-a study of methods. Verhandlungen der Internationalen Vereinigung für Theoretische and Angewandte Limnologie 20: 1226–1230.

    Google Scholar 

  • Reid, T.W. and I.B. Wilson. 1971. E. coli alkaline phosphatase. pp. 373–415 in Boyer, P. (editor), The Enzymes. Academic Press, New York.

    Google Scholar 

  • Rigler, F.H. 1961. The uptake and release of inorganic phosphorus by Daphnia magna Straus. Limnology and Oceanography 24: 107–116.

    Google Scholar 

  • Schneider, J. and G. Rheinheimer. 1988. Isolation methods. pp. 73–94 in Austin, B. (editor), Methods in Aquatic Bacteriology. Wiley and Sons, New York.

    Google Scholar 

  • Smith, P.K., Krohn, R.I., Hermanso, G.T., Mallia, A.K., Gartner, F.H., Provenza, M.D., Goeke, N.N., Olson, B.J. and D.C. Klenk. 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150: 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, U. 1989. Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophic lake. Limnology and Oceanography 34: 1162–1173.

    Article  CAS  Google Scholar 

  • Spencer, W. and G. Bowes. 1989. Ecophysiology of the world’s most troublesome aquatic weeds. pp. 124–138 in Peiterse, A.H. and Murphy, K.J. (editors), Aquatic Weeds. Oxford University Press, Oxford.

    Google Scholar 

  • Stevens, R.J. and M.P. Parr. 1977. The significance of alkaline phosphatase in Lough Neagh. Freshwater Biology 7: 351–355.

    Article  CAS  Google Scholar 

  • Stewart, A.J. and R.G. Wetzel. 1982. Phytoplankton contribution to alkaline phosphatase activity. Archiv für Hydrobiologie 93: 265–271.

    CAS  Google Scholar 

  • Suelter, C.H. 1985. A Practical Guide to Enzymology. Wiley and Sons, New York. 288 pp

    Google Scholar 

  • Torriani, A. 1968. Alkaline phosphatase of Escherichia coli. pp. 212–218 in Grossman, L. and Moldave, K. (editors), Methods in Enzymology, vol. 12. Academic Press, New York.

    Google Scholar 

  • Touati, E.D., Dassa, J. and P.L. Boquet. 1987. Acid phosphatase (pH 2.5) of Escherichia coli: Regulatory characteristics. pp. 31–40 in Torriani-Gorini, A., Rothman, F.G., Silver, S., Wright, A. and Yagil, E. (editors), Phosphate Metabolism and Cellular Regulation In Microorganisms. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • van Gemerden, H. and J.G. Kuenen. 1984. Strategies for growth and evolution of microorganisms in oligotrophic habitats. pp. 25–54 in Hobbie, J.E. and Williams, P.J.LeB. (editors), Heterotrophic Activity In The Sea. Plenum Press, New York.

    Google Scholar 

  • Wetzel, R.G. 1981. Longterm dissolved and particulate alkaline phosphatase activity in a hardwater lake in relation to lake stability and phosphorus enrichments. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 21: 369–381.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Cotner, J.B., Wetzel, R.G. (1991). Bacterial Phosphatases from Different Habitats in a Small, Hardwater Lake. In: Chróst, R.J. (eds) Microbial Enzymes in Aquatic Environments. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3090-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3090-8_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7793-4

  • Online ISBN: 978-1-4612-3090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics