Skip to main content

High-Frequency Ventilation of Infants

  • Chapter
Current Perinatology

Abstract

Mechanical ventilation has proven to be a tremendous tool for the critical care of newborn infants. Many more infants survive their prematurity, meconium aspiration, and other forms of respiratory distress, thanks in large part to mechanical ventilators. Conventional ventilators, however, do have their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DuBois AB, Brody AW, Lewis DH, Burgess BF. Oscillation mechanics of lungs and chest in man. J Appl Physiol. 1956;8:587–594.

    PubMed  CAS  Google Scholar 

  2. Johnson DL. Various aspects of infrasound. Proceedings of the International Colloquium on Infrasound. National Center of Scientific Research, Paris, September 24–27. 1973:339–355.

    Google Scholar 

  3. Radford E. Ventilation standards for use in artificial respiration. J Appl Physiol. 1955;7:451–460.

    PubMed  Google Scholar 

  4. Bunnell JB, Karlson KH, Shannon DC. High-frequency positive pressure ventilation in dogs and rabbits. Am Rev Respir Dis. 1978; 117:289. Abstract.

    Google Scholar 

  5. Henderson Y, Chillingworth FP, Whitney JL. The respiratory dead space. Am J Physiol. 1915;38:1–19.

    CAS  Google Scholar 

  6. Haselton FR, Scherer PW. Bronchial bifurcations and respiratory mass transport. Science. 1980;208:69–71.

    Article  PubMed  CAS  Google Scholar 

  7. Ellis R. A mathematical analysis of gas dynamics in high frequency ventilation. Presented at Conference on High Frequency Ventilation of Infants; April 5, 1984; Snowbird, Ut.

    Google Scholar 

  8. Lunkenheimer PP, Rafflenbeul W, Keller H, et al. Application of trans-tracheal pressure oscillations as a modification of “diffusion respiration”. Br J Anaesth. 1972; 44:627.

    Article  PubMed  CAS  Google Scholar 

  9. Weinmann GG, Mitzner W, Permutt S. Physiological dead space during high-frequency ventilation in dogs. J Appl Physiol. 1984;57:881–887.

    PubMed  CAS  Google Scholar 

  10. Bohn DJ, Miyasaka K, Marchak BE, et al. Ventilation by high-frequency oscillation. J Appl Physiol. 1980;48:710–716.

    PubMed  CAS  Google Scholar 

  11. Slutsky AS, Kamm RD, Rössing RH. Effects of frequency, tidal volume and lung volume on C02 elimination in dogs by high frequency (2–30 Hz), low tidal volume ventilation. J Clin Invest. 1981;68:1475–1484.

    Article  PubMed  CAS  Google Scholar 

  12. Venegas JG, Hales CA, Strieder DJ. A general dimensionless equation of gas transport by high-frequency ventilation. J Appl Physiol. 1986;60(3): 1025–1030.

    Article  PubMed  CAS  Google Scholar 

  13. Housely E, Louzada N, Backlake MR. To sigh or not to sigh. Am Rev Respir Dis. 1970;101:611–614.

    Google Scholar 

  14. Kolton M, Cattran CB, Kent G, et al. Oxygenation during high-frequency ventilation compared with conventional mechanical ventilation in two models of lung injury. Anesth Analg. 1982;61:323–332.

    Article  PubMed  CAS  Google Scholar 

  15. Bancalari A, Gerhardt T, Bancalari E, et al. Gas trapping with high-frequency ventilation: jet versus oscillatory ventilation. J Pediatr. 1987;110:617–622.

    Article  PubMed  CAS  Google Scholar 

  16. Emerson JM. Apparatus for vibrating portions of a patient’s airway. U.S. Patent 2,918,917; 1959.

    Google Scholar 

  17. Boynton BR, Mannino FL, Davis RF, et al. Combined high-frequency oscillatory ventilation and intermittent mandatory ventilation in critically ill neonates. J Pediatr. 1984;105:297–302.

    Article  PubMed  CAS  Google Scholar 

  18. Frantz ID III, Werthammer J, Stark AR. High-frequency ventilation in premature infants with lung disease: adequate gas exchange at low tracheal pressures. Pediatrics. 1983;71:483–488.

    PubMed  Google Scholar 

  19. Sjostrand U. Review of the physiological rationale for and development of high-frequency positive-pressure ventilation-HFPPV. Acta Anaesthesiol Scand [Suppl]. 1977;64:7–27.

    Article  CAS  Google Scholar 

  20. Sjostrand U. High-frequency positive-pressure ventilation (HFPPV): A review. Crit Care Med. 1980;8:345–364.

    Article  PubMed  CAS  Google Scholar 

  21. Marchak BE, Thompson WK, Duffy P, et al. Treatment of RDS by high-frequency oscillatory ventilation: a preliminary report. J Pediatr. 1981;99:287–292.

    Article  PubMed  CAS  Google Scholar 

  22. Klain M, Smith B. High-frequency percutaneous transtracheal jet ventilation. Crit Care Med. 1977;5:280–287.

    Article  PubMed  CAS  Google Scholar 

  23. Carlon G, Kahn R, Howland W, et al. Clinical experience with high-frequency jet ventilation. Crit Care Med. 1981;9:1–6.

    Article  PubMed  CAS  Google Scholar 

  24. Carlo WA, Chatburn RL, Martin RJ. Randomized trial of high-frequency jet ventilation versus conventional ventilation in respiratory distress syndrome. J Pediatr. 1987;110:275–282.

    Article  PubMed  CAS  Google Scholar 

  25. Spitzer AR, Butler S, Fox WW. Ventilatory response to combined high frequency jet ventilation and conventional mechanical ventilation for the rescue treatment of severe neonatal lung disease. Pediatr Pulmonol. 1989;7:244–250.

    Article  PubMed  CAS  Google Scholar 

  26. Tisi GM. Airway compression and closure. In Pulmonary Physiology in Clinical Medicine. Baltimore, Md: Williams & Wilkins; 1980:17–18.

    Google Scholar 

  27. Bell RE, Kuehl TJ, Coalson JJ, et al. High-frequency ventilation compared to conventional positive-pressure ventilation in the treatment of hyaline membrane disease in primates. Crit Care Med. 1984;12:764–768.

    Article  PubMed  CAS  Google Scholar 

  28. Bryan CA, Slutsky AS. Lung volume during high frequency oscillation. Am Rev Respir Dis. 1986;133:928–930.

    PubMed  CAS  Google Scholar 

  29. Rigatto H, Davi M, Frantz EI ID, et al (HIFI Study Group). High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. N Engl J Med. 1989;320:88–93.

    Article  Google Scholar 

  30. Boros SJ, Mammel MC, Coleman JM, et al. A comparison of high-frequency oscillatory ventilation and high-frequency jet ventilation in cats with normal lungs. Pediatr Pulmonol. 1989;7:35–41.

    Article  PubMed  CAS  Google Scholar 

  31. Bodenstein C, Allen W, Garabedian HA, et al. VDR-1 Programmable high frequency ventilation in severe neonatal respiratory failure. Pediatr Pulmonol. 1987;3:374. Abstract.

    Google Scholar 

  32. Boynton BR, Mannino FL, Meathe EA, et al. Airway pressure measurement during high frequency oscillatory ventilation. Crit Care Med. 1984;12:39–43.

    Article  PubMed  CAS  Google Scholar 

  33. Simon BA, Weinmann GG, Mitzner W. Mean airway pressure and alveolar pressure during high-frequency ventilation. J Appl Physiol Respir Environ Exercise Physiol. 1984;57:1069–1978.

    CAS  Google Scholar 

  34. Saari AF, Rössing TH, Solway J, Drazen JM. Lung inflation during high-frequency ventilation. Am Rev Respir Dis. 1984;129:333–336.

    PubMed  CAS  Google Scholar 

  35. Solway J, Rössing TH, Saari AF, Drazen JM. Expiratory flow limitation and dynamic pulmonary hyperinflation during high-frequency ventilation. J Appl Physiol. 1986; 60:2071–2078.

    PubMed  CAS  Google Scholar 

  36. Perez Fontan JJ, Heidt GP, Gregory GA. Mean airway pressure and mean alveolar pressure during high-frequency jet ventilation in rabbits. J Appl Physiol. 1986;61: 456–463.

    PubMed  CAS  Google Scholar 

  37. Chatburn RL, McClellan LD. A heat and humidification system for high-frequency jet ventilation. Respir Care. 1982;27:1386–1391.

    PubMed  CAS  Google Scholar 

  38. Metlay LA, MacPherson TA, Doshi N, Milley JR. A new iatrogenous lesion in newborns requiring assisted ventilation. N Engl J Med. 1983;309:111–112.

    Article  PubMed  CAS  Google Scholar 

  39. Joshi VV, Mandavia SG, Stern L, Wiglesworth FW. Acute lesions induced by endotracheal intubation. Am J Dis Child. 1972;124:646–649.

    PubMed  CAS  Google Scholar 

  40. Rasche RFH, Kuhns LR. Histopathologic changes in airway mucose of infants after endotracheal intubation. Pediatrics. 1972;50:632–637.

    PubMed  CAS  Google Scholar 

  41. Naglie RA, Donn SM, Bandy KP, Nicks JJ. Relationship of tracheobronchial and pulmonary histopathology in high-frequency assisted ventilation. Clin Res. 1986;34: 980A. Abstract.

    Google Scholar 

  42. Polak MJ, Donnelly WH, Bucciarelli RL. Comparison of airway pathologic lesions after high frequency jet or conventional ventilation. Am J Dis Child. 1989; 143: 228–232.

    PubMed  CAS  Google Scholar 

  43. Mammel MC, Boros SJ: Airway damage and mechanical ventilation: a review and commentary. Pediatr Pulmonol. 1987;3:443–447.

    Article  PubMed  CAS  Google Scholar 

  44. Kirpalani H, Higa T, Perlman M, Friedberg J, Cutz E. Diagnosis and therapy of necrotizing tracheobronchitis in ventilated neonates. Crit Care Med. 1985; 13(10): 792–797.

    Article  PubMed  CAS  Google Scholar 

  45. Gonzalez F, Harris T, Richardson R Decreased gas flow through pneumothoraces in neonates receiving high frequency jet versus conventional ventilation. J Pediatr. 1987;110:464–466.

    Article  PubMed  CAS  Google Scholar 

  46. Fredberg JJ. Augmented diffusion in the airways can support pulmonary gas exchange. J Appl Physiol Respirat Environ Exercise Physiol. 1980;48:710–716.

    Google Scholar 

  47. Cotes JE. Lung Function, 3rd ed. Blackwell Scientific Publications, Oxford, 1975: 210–211.

    Google Scholar 

  48. Addendum to Infant Star Operating Instructions, Form number 9910005, Infrasonics, Inc., San Diego, CA, p. 7.

    Google Scholar 

  49. Summary of Safety and Effectiveness, Model 203 Life Pulse High Frequency Ventilator, Bunnell Incorporated, Federal Register, August 10, 1988; 54:154.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bunnell, J.B. (1990). High-Frequency Ventilation of Infants. In: Rathi, M. (eds) Current Perinatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3380-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3380-0_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7990-7

  • Online ISBN: 978-1-4612-3380-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics