Skip to main content

Hypoxia and Hypercapnia Deplete Clear Vesicles but Not Dense-Cored Vesicles in the Carotid Body’s Sensory Nerves

  • Conference paper
Arterial Chemoreception
  • 63 Accesses

Abstract

The nerves that terminate on the carotid body’s glomus cells have been a morphological curiosity since de Castro deduced that they have a sensory function (1), but it was not until the nerve endings were examined with the electron microscope that some of their most interesting features were recognized. One such feature is the presence of numerous 60-nm cytoplasmic vesicles, which resemble the synaptic vesicles of efferent (motor) nerves (2–4). Some of these vesicles cluster near morphologically typical synaptic junctions at which the nerves are presynaptic to glomus cells. Larger vesicles with electron-dense cores are also present in the nerve endings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Castro F (1928). Sur la structure et l’innervation du sinus carotidien de l’homme et des mammiferes: Nouveaux faits sur l’innervation et la fonction du glomus caroticum. Trab Lab Invest Biol Univ Madrid 25: 330–380.

    Google Scholar 

  2. Verna A (1979). Ultrastructure of the carotid body in the mammals. Int Rev Cytol 60: 271–330.

    Article  PubMed  CAS  Google Scholar 

  3. McDonald DM (1981). Peripheral chemoreceptors: structure-function relationships of the carotid body. In: Hornbein TF (Ed). Regulation of Breathing, Part I. New York: Marcel Dekker, Inc. pp 105–319.

    Google Scholar 

  4. Pallot DJ (1987). The Mammalian Carotid Body. Adv Anat Embryol Cell Biol 102:1–91.

    PubMed  CAS  Google Scholar 

  5. Biscoe TJ, Lall A, Sampson SR (1970). Electron microscopic and electro-physiological studies on the carotid body following intracranial section of the glossopharyngeal nerve. J Physiol (Lond) 208: 133–152.

    CAS  Google Scholar 

  6. Biscoe TJ (1971). Carotid body: structure and function. Physiol Rev 51: 427–495.

    Google Scholar 

  7. Morgan SE, Pallot DJ, Willshaw P (1981). The effect of ventilation with different concentrations of oxygen upon the synaptic vesicle density in nerve endings of the cat carotid body. Neuroscience 6: 1461–1467.

    Article  PubMed  CAS  Google Scholar 

  8. Biscoe TJ, Pallot DJ (1982). The carotid body chemoreceptor: an investigation in the mouse. Quart J Exper Physiol 67: 557–576.

    CAS  Google Scholar 

  9. Taha AAM, King AS (1983). Autoradiographic observations on the innervation of the carotid body of the domestic fowl. Brain Res 266: 193–201.

    Article  PubMed  CAS  Google Scholar 

  10. Hoyes AD, Barber P, Jagessar H (1982). Location in the nodose ganglion of the perikarya of neurons whose axons distribute in the epithelium of the rat trachea. J Anat 134: 265–271.

    PubMed  CAS  Google Scholar 

  11. Szolcsanyi J, Jancso-Gabor A, Joo F (1975). Functional and fine structural characteristics of the sensory neuron blocking effect of capsaicin. NaunynSchmiedeberg’s Arch Pharmacol 287: 157–169.

    Article  CAS  Google Scholar 

  12. Hua X-Y, Theodorsson-Norheim E, Brodin E, Lundberg JM, Hökfelt T (1985). Multiple tachykinins (neurokinin A, neuropeptide K, and substance P) in capsaicin-sensitive sensory neurons in the guinea pig. Regulatory Peptides 13: 119.

    Article  Google Scholar 

  13. Franco-Cereceda A, Henke H, Lundberg JM, Petermann JB, Hökfelt T, Fischer JA (1987). Calcitonin gene-related peptide (CGRP) in capsaicin-sensitive substance P-immunoreactive sensory neurons in animals and man: distribution and release by capsaicin. Peptides 8: 399–410.

    Article  PubMed  CAS  Google Scholar 

  14. Bruce AN (1910). Über die Beziehung der sensiblen Nervenendigungen zum Entzündungsvorgang. Archiv fur Experimentelle Pathologie and Pharmakologie 63: 424–33.

    Article  Google Scholar 

  15. Chapman LF, Ramos AO, Goodell H, Wolff H (1961). Neurohumoral features of afferent fibers in man. Arch Neurol 4: 617–650.

    PubMed  CAS  Google Scholar 

  16. Jancso N, Jancso-Gabor A, Szolcsanyi J (1967). Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother 31: 138–151.

    PubMed  CAS  Google Scholar 

  17. Lundberg JM, Saria M (1982). Capsaicin-sensitive vagal neurons involved in control of vascular permeability in rat trachea. Acta Physiol Scand 115: 521–523.

    Article  PubMed  CAS  Google Scholar 

  18. Levine JD, Clark R, Devor M, Helms C, Moskowitz MA, Basbaum AI (1984). Intraneuronal substance P contributes to the severity of experimental arthritis. Science 226: 547–549.

    Article  PubMed  CAS  Google Scholar 

  19. McDonald DM (1988). Neurogenic inflammation in the rat trachea. I. Changes in venules, leucocytes, and epithelial cells. J Neurocytol 17: 583–603.

    Article  PubMed  CAS  Google Scholar 

  20. Heuser JE, Reese TS (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57: 315–344.

    Article  PubMed  CAS  Google Scholar 

  21. Pysh JJ, Wiley RG (1974). Synaptic vesicle depletion and recovery in cat sympathetic ganglia electrically stimulated in vivo. Evidence for transmitter secretion by exocytosis. J Cell Biol 60: 365–374.

    Article  PubMed  CAS  Google Scholar 

  22. McDonald DM (1977). Ultrastructural changes in sensory nerve endings accompanying increased chemoreceptor activity: a morphometric study of the rat carotid body. In: Acker H, Fidone S, Pallot D, Eyzaguirre C, Lubbers DW, Torrance RW (Eds). Chemoreception in the Carotid Body, Berlin: Springer-Verlag. pp 207–215.

    Google Scholar 

  23. McDonald DM (1980). Regulation of chemoreceptor sensitivity in the carotid body: the role of presynaptic sensory nerves. Fed Proc 39: 2627–2635.

    PubMed  CAS  Google Scholar 

  24. Pallot DJ, Blakeman N (1986). Quantitative studies of rat carotid body type I cell nerve endings. Acta Anat 126: 212–217.

    Article  PubMed  CAS  Google Scholar 

  25. Miller TM, Heuser JE (1984). Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J Cell Biol 98: 685–698.

    Article  PubMed  CAS  Google Scholar 

  26. McDonald DM, Mitchell RA (1975). The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis. J Neurocytol 4: 177–230.

    Article  Google Scholar 

  27. Lundberg JM, Lundblad L, Anggard A, Martling C-R, Theodorsson-Norheim E, Stjarne P, Hökfelt TG (1988). Bioactive peptides in capsaicin-sensitive C-fiber afferents of the airways. Functional and pathophysiological implications. In: Kaliner MA, Barnes PJ (Eds). The Airways. Neural Control in Health and Disease, New York: Marcel Dekker, Inc. pp 417–445.

    Google Scholar 

  28. Merighi A, Polak JM, Fumagalli G, Theodosis DT (1989). Ultrastructural localization of neuropeptides and GABA in rat dorsal horn: a comparison of different immunogold labeling techniques. J Histochem Cytochem 37: 529–540.

    Article  PubMed  CAS  Google Scholar 

  29. Matteoli M, Haimann C, Torri-Tarelli F, Polak JM, Ceccarelli B, De Camilli P (1988). Differential effect of alpha-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction. Proc Natl Acad Sci USA 85: 7366–7370.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

McDonald, D.M. (1990). Hypoxia and Hypercapnia Deplete Clear Vesicles but Not Dense-Cored Vesicles in the Carotid Body’s Sensory Nerves. In: Eyzaguirre, C., Fidone, S.J., Fitzgerald, R.S., Lahiri, S., McDonald, D.M. (eds) Arterial Chemoreception. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3388-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3388-6_32

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7993-8

  • Online ISBN: 978-1-4612-3388-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics