Skip to main content

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

RNA, like protein, is capable of forming compact tertiary structures. Transfer RNA has become the first known example of unique tertiary structures of the polyribonucleotides. High molecular weight RNAs have been less studied in this respect, but their ability to acquire compact conformations at sufficient ionic strength and especially in the presence of Mg2+ and polyamines suggested long ago their specific folding into tertiary structures (Spirin, 1963). Electron microscopy study of the isolated ribosomal RNAs in compact conformation has demonstrated their unique shape (Vasiliev et al., 1978; Vasiliev and Zalite, 1980). Determinations of ribosomal RNA primary structures have allowed to predict and to give an experimental proof of the main patterns of their secondary structures, which are formed by complementary base-pairing of polynucleotide chain sections; long-range base-paired interactions indicated the formation of a unique domain structure of the ribosomal RNA (reviewed by Brimacombe et al., 1983). The self-organization of secondary and tertiary structure of the ribosomal RNAs seems to be a prerequisite and a conformational basis for the assembly and the function of the ribosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azad, A.A. (1979). Intermodular base-paired interaction between complementary sequences present near the 3′ ends of 5S RNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits. Nucl. Acids Res 7: 1913–1929.

    Article  PubMed  CAS  Google Scholar 

  • Beaudry, P., Petersen, H.U., Grunberg-Manago, M., Jacrot, B. (1976). A neutron study of the 30S-ribosome subunit and of the 30S-IF-3 complex. Biochem. Biophys. Res. Communs 72: 391–397.

    Article  CAS  Google Scholar 

  • Bogdanov, A.A., Kopylov, A.M., Shatsky, I.N. (1980). The role of ribonucleic acids in the organization and functioning of ribosomes of E. coli. In: Subcellular biochemistry, vol. 7, ed. Roodyn, D.B. Plenum Press, New York/London, pp. 81–116.

    Google Scholar 

  • Boublik, M., Spiess, E., Roth, H.E., Hellmann, W., Jenkins, F. (1978). Structure of LiCl core particles of 50S ribosomal subunits from E. coli by electron microscopy. Cytobiologie 18: 309–319.

    CAS  Google Scholar 

  • Brimacombe, R., Maly, P., Zwieb, C. (1983). The structure of ribosomal RNA and its organization relative to ribosomal protein. Prog. Nucl. Acid. Res. Mol. Biol 28: 1–49.

    Article  CAS  Google Scholar 

  • Dabbs, E.M., Ehrlich, R., Schroeter, B.H., Stöffler-Meilicke, M., Stöffler, G. (1981). Mutants of Escherichia coli lacking ribosomal protein LI. J. Mol. Biol. 149: 553–578.

    Google Scholar 

  • Folkhard, W., Pilz, I., Kratky, O., Garrett, R., Stöffler, G. (1975). Small-angle X-ray studies on the structure of 16S ribosomal RNA and of a complex of ribosomal protein S4 and 16S ribosomal RNA from Escherichia coli. Eur. J. Biochem 59: 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Kisselev, N.A., Gavrilova, L.P., Spirin, A.S. (1961). On configuration of high-polymer ribonucleic acid macromolecules as revealed by electron microscopy. J. Mol. Biol 3: 778–783.

    Article  PubMed  CAS  Google Scholar 

  • Liljas, A. (1982). Structural studies of ribosomes. Prog. Biophys. Mol. Biol 40: 161–228.

    Article  PubMed  CAS  Google Scholar 

  • Nisbet, J.H., Slayter, H.S. (1975). Configurational changes in ribosomal RNA as a function of ionic conditions. Biochemistry 14: 4003–4010.

    Article  CAS  Google Scholar 

  • Serdyuk, I.N., Agalarov, S.C., Gongadze, G.M., Gudkov, A.T., Sedelnikova, S.E., May, R., Spirin, A.S. (1984). On the shape and compactness of ribosomal RNAs and their complexes with proteins in solution. Molekul. Biol 18: 244–260.

    CAS  Google Scholar 

  • Serdyuk, I.N., Agalarov, S.C, Sedelnikova, S.E., Spirin, A.S., May, R. (1983). Shape and compactness of the isolated ribosomal 16S RNA and its complexes with ribosomal proteins. J. Mol. Biol 169: 409–425.

    Article  PubMed  CAS  Google Scholar 

  • Serdyuk, I.N., Grenader, A.K., Koteliansky, V.E. (1977). Study of 30-S ribosomal subparticle protein-deficient ribonucleoprotein derivatives by X-ray diffusion scattering. Eur. J. Biochem 79: 505–510.

    Article  PubMed  CAS  Google Scholar 

  • Shatsky, I.N., Evstafieva, A.G., Bystrova, T.F., Bogdanov, A.A., Vasiliev, V.D. (1980). Topography of RNA in the ribosome: location of the 3′-end of 5S RNA on the central protuberance of the 50S subunit. FEBS Lett. 121: 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Spirin, A.S. (1963). Some problems concerning the macromolecular structure of ribonucleic acids. Prog. Nucl. Acids Res 1: 301–345.

    Article  CAS  Google Scholar 

  • Stanley, W.M., Bock, R.M. (1965). Isolation and physical properties of the ribosomal ribonucleic acid of E. coli. Biochemistry 4: 1302–1311.

    CAS  Google Scholar 

  • Strycharz, W.A., Nomura, M., Lake, J.A. (1978). Ribosomal proteins L7/L12 localized at a single region of the large subunit by immune electron microscopy. J. Mol. Biol 126: 123–140.

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev, V.D. (1974). Morphology of the ribosomal 30S subparticle according to electron microscopy data. Acta Biol. Med. Germ 33: 779–793.

    PubMed  CAS  Google Scholar 

  • Vasiliev, V.D., Koteliansky, V.E. (1977). The 30S ribosomal subparticle retains its main morphological features after removal of half the proteins. FEBS Lett. 76: 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev, V.D., Koteliansky, V.E. (1979). Freeze-drying and high-resolution shadowing in electron microscopy of Escherichia coli ribosomes. Methods Enzymol. 59: 612–629.

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev, V.D., Koteliansky, V.E., Rezapkin, G.V. (1977a). The complex of 16S RNA with proteins S4, S7, S8, SI5, retains the main morphological features of the 30S ribosomal subparticle. FEBS Lett. 79: 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev, V.D., Koteliansky, V.E., Shatsky, I.N., Rezapkin, G.V. (1977b). Structure of the ribosomal 16S RNA-protein S4 complex as revealed by electron microscopy. FEBS Lett. 84: 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev, V.D., Selivanova, O.M., Koteliansky, V.E. (1978). Specific selfpacking of the ribosomal 16S RNA. FEBS Lett. 95: 273–276.

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev, V.D., Selivanova, O.M., Ryazantsev, S.N. (1983). Structure of the Escherichia coli 50S ribosomal subunit. J. Mol. Biol 171: 561–569.

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev, V.D., Zalite, O.M. (1980). Specific compact self-packing of the ribosomal 23S RNA. FEBS Lett. 121: 101–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Vasiliev, V.D., Serdyuk, I.N., Gudkov, A.T., Spirin, A.S. (1986). Self-Organization of Ribosomal RNA. In: Hardesty, B., Kramer, G. (eds) Structure, Function, and Genetics of Ribosomes. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4884-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4884-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9346-0

  • Online ISBN: 978-1-4612-4884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics