Skip to main content

Radionuclide Cycling in Natural Waters: Relevance of Scavenging Kinetics

  • Conference paper
Sediments and Water Interactions

Abstract

Apparent sorption rate constants on oceanic particles were measured in batch experiments for a series of soluble and “particle-reactive” radionuclides. We have found that radionuclide uptake by natural particles is slow compared to adsorption rates onto defined oxide surfaces. Equilibrium is attained only at time scales of days. One reason for slow scavenging reactions is the coagulation of radioactively tagged colloidal particles onto larger (filterable) particles. This interpretation explains both the slow sorption (scavenging) kinetics and the dependence of the sorption rate and the distribution ratio (K d ) on the particle concentration. The sorption rate constants for Th isotopes calculated by this method are in good agreement with the rates determined by in situ measurements of the U/Th disequilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, D.M., 1981. Tracer Studies in Marine Microcosms: Transport Processes Near the Sediment-Water Interface, Ph.D. Thesis. Columbia University, New York, 346 pp.

    Google Scholar 

  • Aller, R. and Cochran, J.K., 1976. 238U/234Th disequilibrium in nearshore sediments: particle reworking and diagenetic time scales. Earth Planet. Sci. Lett., 29: 37–50.

    Article  Google Scholar 

  • Atkinson, R.J., Posner, A.M. and Quirk, J.P., 1972. Kinetics of isotopic exchange of phosphate at the alpha- FeOOH aqueous solution interface. J. Inorg. Nucl. Chem., 34: 2201–2211.

    Article  Google Scholar 

  • Bacon, M.P. and Anderson, R.F., 1982. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. J. Geophys. Res., 87: 2045–2056.

    Article  Google Scholar 

  • Balistrieri, L.S. and Murray, J.W., 1984. Marine scavenging: trace metal adsorption by interfacial sediment from MANOP site H. Geochim. Cosmochim. Acta, 48: 921–929.

    Article  Google Scholar 

  • Brewer, P., Nozaki, Y., Spencer, D.W. and Fleer, A.P., 1980. Sediment trap experiments in the deep North Atlantic: isotopic and elemental fluxes. J. Mar. Res., 38: 703–728.

    Google Scholar 

  • Broecker, W.S., Kaufman, A. and Trier, R.M., 1973. The residence time of thorium in surface sea water and its implications regarding the role of reactive pollutants. Earth Planet Sci. Lett., 20: 35–44.

    Article  Google Scholar 

  • Coale, K.H. and Bruland, K.W., 1985. 234Th/238U disequilibria within the California Current. Limnol. Oceanogr., 30: 22–33.

    Google Scholar 

  • Enfield, C.E., Harlin, C.C. Jr., and Bledsoe, B.E., 1976. Comparison of five kinetic models for orthophosphate reactions in mineral soils. Soil Sci. Soc. Am. J., 40: 243–249.

    Article  Google Scholar 

  • Epstein, G.B., 1983. Isothermal Diffusion of Eu(III) and Th (IV) in Deep Sea Sediments, Experimental Results and a Numerical Model, M.Sc. Thesis. University of Rhode Island, Kingston, RI.

    Google Scholar 

  • Ezwald, J.K., Upchurch, J.B. and O’Malia, C.R., 1974. Coagulation in estuaries. Environ. Sci. Technol., 8: 58–63.

    Article  Google Scholar 

  • Kepac, F., 1977. Behavior of carrier-free radionuclides. In: E.A. Evans and M. Omramatsu (Editors), Radio-tracer Techniques and Applications, vol 1. Marcel Dekker, Inc., pp. 339–374.

    Google Scholar 

  • Krishnaswami, S., Graustein, W.C., Turekian, K.K. and Dowd, J.F., 1982. Radium, thorium and radioactive lead isotopes in groundwaters: application to the in situ determination of adsorption-desorption rate constants and retardation factors. Water Resources Res., 18: 1633.

    Article  Google Scholar 

  • Kuo, S. and Lotse, E.G., 1974. Kinetics of phosphate adsorption and desorption by lake sediments. Soil Sci. Soc. Am. Proc., 38: 50–54.

    Article  Google Scholar 

  • Li, W.C., Armstrong, D.E., Williams, J.D.H., Harris, R.F. and Syers, J.K., 1972. Rate and extent of inorganic phosphate exchange in lake sediments. Soil Sci. Soc. Am. Proc., 36: 279–285.

    Article  Google Scholar 

  • Li, Y.-H., Feely, H.W. and Toggweiler, J.R., 1980. 288Ra and 228Th concentrations in GEOSECS Atlantic surface waters. Deep-Sea Res., 27A: 545–555.

    Google Scholar 

  • Li, Y.-H., Santschi, P.H., Kaufmann, A., Benninger, L.K. and Feely, H.W., 1981. Natural radionuclides in waters of the New York Bight. Earth Planet. Sci. Lett., 55: 217–228.

    Google Scholar 

  • Li, Y.-H., Burkhardt, L., Bucholtz, M., O’Hara, P. and Santschi, P.H., 1984. Partition of radiotracers between suspended particles and seawater. Geochim. Cosmochim. Acta, 48: 2011–2019.

    Article  Google Scholar 

  • McCave, I.N., 1984. Size spectra and aggregation of suspended particles in the deep ocean. Deep-Sea Res., 31: 329–352.

    Article  Google Scholar 

  • McKee, B.A., DeMaster, D.J. and Nittrouer, C.A., 1984. The use of 234Th/238U disequilibrium to examine the fate of particle-reactive species on the Yangtze continental shelf. Earth Planet. Sci. Lett., 68: 431–442.

    Article  Google Scholar 

  • Nozaki, Y., Horibe, Y. and Tsubota, H., 1981. The water column distributions of thorium isotopes in the western North Pacific. Earth Planet. Sci. Lett., 54: 203–216.

    Article  Google Scholar 

  • Nyffeler, U.P., Li, Y.-H. and Santschi, P.H., 1984. A kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems. Geochim. Cosmochim. Acta, 48: 1513–1522.

    Article  Google Scholar 

  • Nyffeler, U.P., Santschi, P.H. and Li, Y.-H., 1986. The relevance of scavenging kinetics to modelling of sediment-water interactions in natural waters. Lirnnol. Oceanogr., 31 (2): 277–292.

    Article  Google Scholar 

  • O’Connor, D.J. and Connolly, J.P., 1980. The effects of concentration of adsorbing solids on the partition coefficient. Water Res., 14: 1517–1523.

    Article  Google Scholar 

  • Santschi, P.H., 1984. Particle flux and trace metal residence times in natural waters. Limnol. Oceanogr., 29: 1100–1108.

    Article  Google Scholar 

  • Santschi, P.H., Li, Y.-H. and Bell, J., 1979. Natural radi-onuclides in Narragansett Bay. Earth Planet. Sci. Lett., 45: 201–213.

    Google Scholar 

  • Santschi, P.H., Adler, D., Amdurer, M., Li, Y.-H. and Bell, J., 1980a. Thorium isotopes as analogues for “particle-reactive” pollutants in coastal marine environments. Earth Planet. Sci. Lett., 47: 327–335.

    Article  Google Scholar 

  • Santschi, P.H., Li, Y.-H., Bell, J., Trier, R.M. and Kawtaluk, K., 1980b. Plutonium in the coastal marine environment. Earth Planet. Sci. Lett., 51: 248–265.

    Article  Google Scholar 

  • Santschi, P.H., Li, Y.-H., Bell, J., Adler, D., Amdurer, M. and Nyffeler, U.P., 1983a. The relative mobility of natural (Th, Pb, Po) and fallout (Pu, Cs, Am) radionuclides in the coastal marine environment: results from model ecosystem (MERL) and Narragan¬sett Bay studies. Geochim. Cosmochim. Acta, 47: 201–210.

    Article  Google Scholar 

  • Santschi, P.H., Adler, D. and Amdurer, M., 1983b. The fate of particles and particle-reactive trace metals in coastal waters: radioisotope studies in microcosms. In: Trace Metals in Sea Water, Plenum Press, New York, pp. 331–350.

    Google Scholar 

  • Spencer, D.W., Brewer, P.G., Fleer, A., Honjo, S., Krishnaswami, S. and Nozaki, Y., 1978. Chemical fluxes from a sediment trap experiment in the deep Sargasso Sea. J. Mar. Res., 36: 493–523.

    Google Scholar 

  • Stumm, W. and Morgan, J.J., 1981. Aquatic Chemistry, John Wiley & Sons, New York, 780 pp.

    Google Scholar 

  • Tsunogai, S. and Minagawa, M., 1978. Settling model for the removal of insoluble chemical elements in sea water. Geochem. J., 12: 483–490.

    Google Scholar 

  • Voice, T.C., Rice, C.P. and Weber, W.J. Jr., 1983. Effects of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems. Environ. Sci. Technol., 17: 513–518.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Santschi, P.H., Nyffeler, U.P., Li, YH., O’Hara, P. (1986). Radionuclide Cycling in Natural Waters: Relevance of Scavenging Kinetics. In: Sly, P.G. (eds) Sediments and Water Interactions. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4932-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4932-0_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9364-4

  • Online ISBN: 978-1-4612-4932-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics