Skip to main content

The Influence of Defect Crystallography on Some Properties of Orthosilicates

  • Chapter
Metamorphic Reactions

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 4))

Abstract

Dislocations and other crystallographically controlled defects are now known to control both mechanical and geochemical behavior of minerals by a degree that is a function of the metamorphic and deformation history. Dislocation creep of some kind is undoubtedly the controlling mechanism for accommodating large plastic strains at sufficiently high temperatures and pressures (see Kirby, 1983, and references therein), and recent electron microscopy has led to an increased appreciation of the ability of defects to modify the chemical response of minerals to retrograde metamorphism. (Knipe and Wintsch, 1982). Despite this recent interest in dislocation mechanisms, a notable limitation of many of these applications is the lack of a realistic concept of the structure of a mineral dislocation and how the crystallography of mineral defects affects their transport, interaction, and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beran, A., and Putnis, A. (1983) A model for the OH positions in olivine, derived from infrared-spectroscopic investigations. Phys. Chem. Minerals 9, 57–60.

    Article  Google Scholar 

  • Boland, J. N., and Liu, L. (1983) Olivine to spinel transformation in Mg2SiO4 via faulted structures. Nature 303, 233–235.

    Article  Google Scholar 

  • Cressey, G., Schmid, R., and Wood, B. J. (1978) Thermodynamic properties of almandine-grossular garnet solid solutions Contrib. Mineral. Petrol. 67, 397–404.

    Article  Google Scholar 

  • Frank, F. C. (1951) Capillary equilibria of dislocated crystals. Acta Cryst. 4, 497–501.

    Article  Google Scholar 

  • Freund, F. (1981) Mechanism of the water and carbon dioxide solubility in oxides and silicates and the role of O-. Contrib. Mineral. Petrol. 76, 474–482.

    Article  Google Scholar 

  • Green, II, H. W., and Radcliffe, S. V. (1975) Fluid precipitates in rocks from the earth’s mantle. Geol. Soc. Amer. Bull. 86, 846–852.

    Article  Google Scholar 

  • Griggs, D. T. (1974) A model for hydrolytic weakening in quartz. J. Geophys. Res. 79, 1653–1661.

    Article  Google Scholar 

  • Haasen, P. (1979) Solution hardening in f.c.c. metals, in Dislocations in Solids, Vol. 4, edited by F. R. N. Nabarro, pp. 155–190. North Holland, Amsterdam.

    Google Scholar 

  • Hamaya, N., and Akimoto, S. (1982) On the mechanism of the olivine-spinel transformation. Phys. Earth Planet. Int. 29, 6–11.

    Article  Google Scholar 

  • Hazen, R. M., and Finger, L. W. (1976) Effects of temperature and pressure on the crystal structure of forsterite. Amer. Mineral. 61, 1280–1293.

    Google Scholar 

  • Hazen, R. M., and Finger, L. W. (1978) Crystal structures and compressibilities of pyrope and grossular to 60 kbar. Amer. Mineral. 63, 297–303.

    Google Scholar 

  • Helgeson, H. C., Delaney, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Amer. J. Sci. 278A, 229 pp.

    Google Scholar 

  • Hirth, J. P., and Lothe, J. (1968) Theory of Dislocations, 1st Ed. McGraw Hill, New York.

    Google Scholar 

  • Hobbs, B. E. (1981) The influence of metamorphic environment upon the deformation of minerals. Tectonophysics, 78, 335–383.

    Article  Google Scholar 

  • Holder, J., and Granato, A. V. (1969) Thermodynamic properties of solids containing defects. Phys. Rev. 182, 729–741.

    Article  Google Scholar 

  • Kirby, S. H. (1983) Rheology of the lithosphere. Rev. Geophys. Space Phys. 21, 1458–1487.

    Article  Google Scholar 

  • Kirby, S. H., and Kronenberg, A. K. (1984) Hydrolytic weakening of quartz: Uptake of molecular water and the role of microfracturing. Trans. Amer. Geophys. Union 65, 271.

    Google Scholar 

  • Knipe, R. J., and Wintsch, R. P. (1982) Feldspar behaviour in a mylonite: An example of the interaction between deformation and metamorphic processes. Mitt. Geol. Inst. ETH, Neue Folge 239a, 161–163.

    Google Scholar 

  • Lasaga, A. C. (1980) Defect calculations in silicates: Olivine. Amer. Mineral. 65, 1237–1248.

    Google Scholar 

  • Lasaga, A. C. (1981) The atomistic basis of kinetics: Defects in minerals, inKinetics of Geochemical Processes. Reviews in Mineralogy, 8, edited by A. C. Lasaga and R. J. Kirkpatrick. Mineral. Soc. America, 261–319.

    Google Scholar 

  • Lasaga, A. C., and Cygan, R. T. (1982) Electronic polarizabilities of silicate minerals. Amer. Mineral. 67, 328–334.

    Google Scholar 

  • Madon, M., and Poirier, J. P. (1983) Transmission electron microscope observation of, and (Mg,Fe)2SiO4 in shocked meteorites: Planar defects and polymorphic transitions. Phys. Earth Planet. Int. 33, 31–44.

    Article  Google Scholar 

  • Meagher, E. P. (1980) Silicate garnets, inReviews in Mineralogy, 5, Orthosilicates, edited by P. H. Ribbe. Mineral. Soc. America, 25–66.

    Google Scholar 

  • Miyamoto, M., and Takeda, H. (1983) Atomic diffusion coefficients calculated for transition metals in olivine. Nature 303, 602–603.

    Article  Google Scholar 

  • Poirier, J. P. (1975) On the slip systems of olivine. J. Geophys. Res. 80, 4059–4061.

    Article  Google Scholar 

  • Poirier, J. P., and Vergobbi, B. (1978) Splitting of dislocations in olivine, cross-slip controlled creep and mantle rheology. Phys. Earth Planet. Int 16, 370–378.

    Article  Google Scholar 

  • Price, G. D., and Parker, S. C. (1984) Computer simulations of the structural and physical properties of the olivine and spinel polymorphs of Mg2SiO4. Phys. Chem. Minerals 10, 209–216.

    Article  Google Scholar 

  • Rabier, J., Veyssiere, P., and Garem, H. (1981) Dissociation of dislocation with a/2 111 Burgers vectors in YIG single crystals deformed at high temperature. Phil. Mag. A. 44, 1363–1373.

    Article  Google Scholar 

  • Rabier, J., Veyssiere, P., and Grilhe, J. (1976) Possibility of stacking faults and dissociation of dislocations in the garnet structure. Phys. Stat. Sol. (a) 35, 259–268.

    Article  Google Scholar 

  • Ross, J. V., Bauer, S. J., and Carter, N. L. (1983) Effect of the quartz transition on the creep properties of quartzite and granite. Geophys. Res. Lett. 10, 1129–1132.

    Article  Google Scholar 

  • Smith, B. K. (1982) Plastic deformation of garnet: Mechanical behavior and microstructures. Unpublished PhD thesis, University of California, Berkeley.

    Google Scholar 

  • Spinnler, G. E., Self, P. G., Iijima, S., and Buseck, P. R. (1984) Stacking disorder in clinochlore chlorite. Amer. Mineral. 69, 252–263.

    Google Scholar 

  • Stocker, R. L., and Smyth, D. M. (1978) Effect of enstatite activity and oxygen partial pressure on the point defect chemistry of olivine. Phys. Earth Planet. Int. 16, 145–156.

    Article  Google Scholar 

  • Suzuki, H. (1957) The yield strength of binary alloys, in Dislocations and Mechanical Properties of Crystals, edited by J. C. Fisher, pp. 361–390. Wiley, New York.

    Google Scholar 

  • Turnbull, D. (1956) Phase changes. Solid State Phys. 3, 226–309.

    Google Scholar 

  • Van der Biest, O., and Thomas, G. (1974) Cation stacking faults in lithium ferrite spinel. Phys. Stat. Sol. 24, 65–74.

    Article  Google Scholar 

  • Van der Hoek, B., Van der Eerden, J. P., and Bennema, P. (1982) Thermodynamical stability conditions for the occurrence of hollow cores caused by stress of line and planar defects. J. Cryst. Growth 56, 621–632.

    Article  Google Scholar 

  • Vander Sande, J. B., and Kohlstedt, D. L. (1976) Observation of dissociated dislocations in deformed olivine. Phil. Mag. 34, 653–658.

    Google Scholar 

  • Vaughan, P. J., and Coe, R. S. (1981) Creep mechanisms in Mg2GeO4: Effects of a phase transition. J. Geophys. Res. 86, 389–404.

    Article  Google Scholar 

  • Vaughan, P. J., and Kohlstedt, D. L. (1981) Cation stacking faults in magnesium germanate spinel. Phys. Chem. Minerals 7, 241–245.

    Article  Google Scholar 

  • Vaughan, P. J., Green, II, H. W., and Coe, R. S. (1982) Is the olivine-spinel transformation martensitic? Nature 298, 357–358.

    Article  Google Scholar 

  • Weidner, D. J., and Hamaya, N. (1983) Elastic properties of the olivine and spinel polymorphs of Mg2GeO4, and evaluation of elastic analogues. Phys. Earth Planet. Int. 33, 275–283.

    Article  Google Scholar 

  • Yund, R. A., Smith, B. M., and Tullis, J. (1981) Dislocation-assisted diffusion of oxygen in albite. Phys. Chem. Minerals 7, 185–189.

    Article  Google Scholar 

  • Zeuch, D. H., and Green, II, H. W. (1978) Dislocation of substructures of experimentally deformed dunite. Trans. Amer. Geophys. Union 59, 375.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Smith, B.K. (1985). The Influence of Defect Crystallography on Some Properties of Orthosilicates. In: Thompson, A.B., Rubie, D.C. (eds) Metamorphic Reactions. Advances in Physical Geochemistry, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5066-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5066-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9548-8

  • Online ISBN: 978-1-4612-5066-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics