Skip to main content

Sophus Lie and Harmony in Mathematical Physics, on the 150th Anniversary of His Birth

  • Chapter
Mathematical Conversations
  • 1185 Accesses

Abstract

“The extraordinary significance of Lie’s work for the general development of geometry can not be overstated; I am convinced that in years to come it will grow still greater”—so wrote Felix Klein [13] in his nomination of the results of Sophus Lie on the group-theoretic foundations of geometry to receive the N. I. Lobachevskii prize. This prize was established by the Physical-Mathematical Society of the Imperial University of Kazan in 1895 and was to recognize works on geometry, especially non-Euclidean geometry, chosen by leading specialists. The first three prizes awarded were to the following:

  • 1897: S. Lie (Nominator: F. Klein)

  • 1900: W. Killing (Nominator: F. Engel)

  • 1904: D. Hilbert (Nominator: H. Poincaré).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. F. Ames, non-linear Partial Differential Equations in Engineering, Vols. I and II, New York: Academic Press (1965, 1972).

    Google Scholar 

  2. R. L. Anderson and N. H. Ibragimov, Lie-Bäcklund Transformations in Applications, Philadelphia: SLAM (1979).

    Book  MATH  Google Scholar 

  3. Yu. Berest, Construction of fundamental solutions for Huygens equations as invariant solutions, Dokl Akad. Nauk SSR, 317(4), 786–789 (1991).

    MathSciNet  Google Scholar 

  4. L. Bianchi, Lezioni sulla teoria dei groupi continui finiti di trasformazioni, Pisa: Spoerri (1918).

    Google Scholar 

  5. G. Birkhoff, Hydrodynamics, Princeton, NJ: Princeton University Press (1950, 1960).

    MATH  Google Scholar 

  6. G. W. Bluman and S. Kumei, Symmetries and Differential Equations, New York: Springer-Verlag (1989).

    Book  MATH  Google Scholar 

  7. T. Hawkins, Jacobi and the birth of Lie’s theory of groups, Arch. History Exact Sciences 42(3), 187–278 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Hille, Functional Analysis and Semi-groups, New York: Amer. Math. Soc. (1948), preface.

    MATH  Google Scholar 

  9. N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Dordrecht: D. Reidel (1985).

    Book  MATH  Google Scholar 

  10. N. H. Ibragimov, Primer on the Group Analysis, Moscow: Znanie (1989).

    Google Scholar 

  11. N. H. Ibragimov, Essays in the Group Analysis of Ordinary Differential Equations, Moscow: Znanie (1991).

    Google Scholar 

  12. N. H. Ibragimov, Group analysis of ordinary differential equations and the invariance principle in mathematical physics, Uspekhi Mat. Nauk, 47(1992), 89–156.

    Google Scholar 

  13. F. Klein, Theorie der Transformationsgruppen B. III, Pervoe prisuzhdenie premii N. I. Lobachevskogo, 22 okt. 1897goda, Kazan: Tipo-litografiya Imperatorskago Universiteta (1898), pp. 10–28.

    Google Scholar 

  14. P. S. Laplace, Mécanique céleste, T. I. livre 2, Chap. III (1799).

    Google Scholar 

  15. S. Lie, Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichungen, Arch. for Math. VI (1881).

    Google Scholar 

  16. S. Lie, Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten, Arch. Math. VIII, 187–453 (1883).

    Google Scholar 

  17. S. Lie, Theorie der Transformationsgruppen, Bd. 1 (Bearbeitet unter Mitwirkung von F. Enget), Leipzig: B. G. Teubner (1888).

    Google Scholar 

  18. S. Lie, Die infinitesimalen Berührungstransformationen der Mechanik, Leipz. Ber. (1889).

    Google Scholar 

  19. S. Lie, Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen (Bearbeitet und herausgegeben von Dr. G. Scheffers), Leipzig: B. G. Teubner (1891).

    Google Scholar 

  20. S. Lie, Zur allgemeinen Theorie der partiellen Differentialgleichunen beliebiger Ordnung, Leipz. Ber. I, 53–128 (1895).

    Google Scholar 

  21. S. Lie, Gesammelte Abhandlungen, Bd. 1–6, Leipzig-Oslo.

    Google Scholar 

  22. M. Noether, Sophus Lie, Math. Annalen 53, 1–41 (1900).

    Article  MATH  Google Scholar 

  23. P. J. Olver, Applications of Lie Groups to Differential Equations, New York: Springer-Verlag (1986).

    Book  MATH  Google Scholar 

  24. L. V. Ovsiannikov, Group properties of differential equations, Novosibirsk: USSR Academy of Science, Siberian Branch (1962).

    Google Scholar 

  25. L. V. Ovsiannikov, Group Analysis of Differential Equations, Boston: Academic Press (1982).

    MATH  Google Scholar 

  26. A. Z. Petrov, Einstein Spaces, Oxford: Pergamon Press (1969).

    MATH  Google Scholar 

  27. E. M. Polischuk, Sophus Lie, Leningrad: Nauka (1983).

    Google Scholar 

  28. V. V. Pukhnachev, Invariant solutions of Navier-Stokes equations describing free-boundary motions, Dokl. Akad. Nauk SSSR 202(2), 302–305 (1972).

    Google Scholar 

  29. W. Purkert, Zum Verhältnis von Sophus Lie und Friedrich Engel, Wiss. Zeitschr. Ernst-Moritz-Arndt-Universität Greifswald, Math.-Naturwiss. Reihe XXXIII, Heft 1–2,29–34,(1984).

    MathSciNet  Google Scholar 

  30. G. F. B. Riemann, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abh. K. Ges. Wiss. Göttingen 8 (1860).

    Google Scholar 

  31. L. I. Sedov, Similarity and Dimensional Methods in Mechanics, 4th ed., New York Academic Press (1959).

    MATH  Google Scholar 

  32. H. Stephani, Differential Equations: Their Solution Using Symmetries, Cambridge: Cambridge University Press (1989).

    MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ibragimov, N.H. (2001). Sophus Lie and Harmony in Mathematical Physics, on the 150th Anniversary of His Birth. In: Mathematical Conversations. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0195-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0195-0_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6556-6

  • Online ISBN: 978-1-4613-0195-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics