Skip to main content

Protein hydration and glass transitions

  • Chapter
The Properties of Water in Foods ISOPOW 6

Abstract

Since the early 1980s considerable progress has been made in understanding the dynamic behavior of proteins. The realization that proteins undergo a glass-like dynamical transition and display-a number of other properties typical of glass-forming systems provides a framework for a more general description of their dynamic behavior (Green, Fan and Angell, 1994; Angell, 1995; Gregory, 1995). One important feature to emerge is the role of water as a plasticizer of proteins. Quite apart from its fundamental interest, the influence of hydration on the dynamic properties of proteins is also of considerable importance in the development of biotechnologies and industrial processes that make use of proteins and, in particular, in food processing and preservation. The impact of this new understanding of proteins as plasticized polymers in the food sciences has been little short of revolutionary and has been described in a number of excellent reviews (Slade, Levine and Finley, 1989; Slade and Levine, 1991, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angell, C.A. (1984) Strong and fragile liquids. In Relaxations in Complex Systems, eds K.L. Ngai and G.B. Wright, National Technical Information Service, U.S. Dept. of Commerce, pp. 3 - 12

    Google Scholar 

  • Angell, C.A. (1995) Formation of glasses from liquids and biopolymers. Science, 267, 1924 - 1935

    Article  CAS  Google Scholar 

  • Belonogova, O.V., Frolov, E.N., Krasnopol’skaya et al. (1978) Study of effect of hydration on mobility of mossbauer atoms in active centers of metalloenzymes. Doklady Akad. Nauk. USSR, 241, 219 - 222

    CAS  Google Scholar 

  • Bohmer, R., Ngai, K.L., Angeil, C.A. and Plazek, D.J. (1993) Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys 99, 4201 - 4209.

    Article  Google Scholar 

  • Bohmer, R. and Angeil, C.A. (1994) Local and global relaxations in glass-forming materials. In Disorder Effects on Relaxational Processes, eds R. Richert and A. Blumen, Springer- Verlag, Berlin, pp. 11 - 54.

    Google Scholar 

  • Bone, S. and Pethig, R. (1985) Dielectric studies of protein hydration and hydration-induced flexibility. J. Mol Biol, 181, 323 - 326.

    Article  CAS  Google Scholar 

  • Brandts, J.F. (1964) The thermodynamics of protein denaturation, II. A model of reversible denaturation and interpretations regarding the stability of chymotrypsinogen. J. Am. Chem. Soc, 86, 4302 - 4314.

    Article  CAS  Google Scholar 

  • Bryngelson, J.D., Onuchic, J.N., Socci, N.D. and Wolynes, P.G. (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins: Struct. Funct. Genet, 21, 167 - 195.

    Article  CAS  Google Scholar 

  • Careri G., Giansanti, A., and Gratten, E. (1979) Lysozyme film hydration events: an IR and gravimetric study. Biopolymers, 18, 1187 - 1203.

    Article  CAS  Google Scholar 

  • Carpenter, J.F. and Crowe, J.H. (1989) An infrared spectroscopic study of the interaction of carbohydrates with dried proteins. Biochemistry, 28, 3916 - 3922.

    Article  CAS  Google Scholar 

  • Chen, B. and Schellman, J.A. (1989) Low temperature unfolding of a mutant of phage T4 lysozyme. 1. Equilibrium studies. Biochemistry, 28, 685 - 691.

    Article  CAS  Google Scholar 

  • Chen, B., Baase, W.A. and Schellman, J.A. (1989) Low temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry, 28, 691 - 699.

    Article  CAS  Google Scholar 

  • Corbett, R. and Roche, R. (1984) Use of high-speed size-exclusion chromatography for the study of protein folding and stability. Biochemistry, 23, 1888 - 1894.

    Article  CAS  Google Scholar 

  • Cusack, S. (1992) Frozen stiff. Current Biol, 2, 411 - 413.

    Article  CAS  Google Scholar 

  • Damaschun, G., Damaschun, H., Gast, K. et al(1993) Cold denaturation-induced conformational changes in phosphoglycerate kinase from yeast. Biochemistry, 32, 7739 - 7746.

    Article  CAS  Google Scholar 

  • Desai, U.R., Osterhout, J.J. and Klibanov, A.M. (1994) Protein structure in the lyophilized state: a hydrogen isotope exchange/NMR study with bovine pancreatic-trypsin inhibitor. J. Am. Chem. Soc, 116, 9420 - 9422.

    Article  CAS  Google Scholar 

  • Dill, K.A. (1990) Dominant forces in protein folding. Biochemistry, 29, 7133 - 7155.

    Article  CAS  Google Scholar 

  • Doster, W.. Cusack, S. and Petry, W. (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature, 337, 754 - 756.

    Article  CAS  Google Scholar 

  • Ellis, L.M., Bloomfield, V.A. and Woodward, C.K. (1975) Hydrogen-tritium exchange kinetics of soybean trypsin inhibitor (Kunitz). Solvent accessibility of the folded conformation. Biochemistery, 14, 3413 - 3419.

    Article  CAS  Google Scholar 

  • Englander, S.W. and Kallenback, N.R. (1984) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys, 16, 521 - 655.

    Article  Google Scholar 

  • Englander, S.W. (1993) In pursuit of protein folding. Science, 262, 848 - 849.

    Article  CAS  Google Scholar 

  • Englander, S.W., Downer, N.W. and Teitelbaum, H. (1972) Hydrogen exchange. Ann. Rev. Biochem, 41, 903–924

    Article  CAS  Google Scholar 

  • Englander,S.W., Calhoun, D.B., Englander, J.J. et al. (1980) Individual breathing reactions measured in hemoglobin by hydrogen exchange methods. Biophys. J, 32, 577 – 589.

    Google Scholar 

  • Epstein, C.J., Goldberger, R.F. and Anfinsen, C.B. (1963) The genetic control of tertiary protein structure: studies with model systems. Cold Spring Harbor Symposium on Quantitative Biology, 28, 439 - 449.

    CAS  Google Scholar 

  • Fan, J. Cooper, E.I. and Angell, C.A. (1994) Glasses with strong calorimetric (β-glass transitions and the relation to the protein glass transition problem. J. Phys. Chem, 98, 9345 - 9349.

    CAS  Google Scholar 

  • Finkelstein, A.V. and Nakamura, H. (1993) Weak points of antiparallel β-sheets. How are they filled up in globular proteins? Protein Eng, 6, 367 - 372.

    Article  CAS  Google Scholar 

  • Finney, J.L. and Poole, P.L. (1984) Protein hydration and enzyme activity: the role of hydration-induced conformation and dynamic changes in the activity of lysozyme. Comments Mol. CellBiophys, 2, 129 - 151

    CAS  Google Scholar 

  • Frauenfelder, H., Parak, F. and Young, R.D. (1988) Conformational substates in proteins. Ann. Rev. Biophys. Biophys. Chem, 17, 451 - 79.

    Article  CAS  Google Scholar 

  • Fujita, Y. and Noda, Y. (1978) Effect of hydration on the thermal denaturation of lysozyme as measured by differential scanning calorimetry. Bull. Chem. Soc. Jpn, 51, 1567 - 1568.

    Article  CAS  Google Scholar 

  • Fujita, Y. and Noda, Y. (1979) Effect of hydration on the thermal stability of protein as measured by differential scanning calorimetry. Lysozyme-D20 system. Bull. Chem. Soc. Jpn, 52, 2349 - 2352.

    Article  CAS  Google Scholar 

  • Fujita, Y. and Noda, Y. (1981a) Effect of hydration on the thermal stability of protein as measured by differential scanning calorimetry. Internat. J. Pept. Protein Res, 18, 12 - 17.

    Article  Google Scholar 

  • Fujita, Y. and Noda, Y. (1981b) The effect of hydration on the thermal stability of ovalbumin as measured by means of differential scanning calorimetry. Bull.Chem. Soc. Jpn, 54, 3233 - 3234.

    Article  CAS  Google Scholar 

  • Fullerton, G.D., Ord, V.A. and Cameron, I.L. (1986) An evaluation of the hydration of lysozyme by an NMR titration method. Biochim. Biophys. Acta, 869, 230 - 246.

    Article  CAS  Google Scholar 

  • Goldanskii, V.L. and Krupyanskii, Y.F. (1989) Protein and protein-bound water dynamics studied by Rayleigh scattering of Mossbauer radiation (RSMR). Q.Rev. Biophys,, 22, 39 - 92.

    Article  CAS  Google Scholar 

  • Goldanskii, V.I. and Krupyanskii, Y.F. (1995) Protein dynamics: hydration, temperature, and solvent viscosity effects as revealed by Rayleigh scattering of Mossbauer radiation. In Protein-Solvent Interactions, ed. R.B. Gregory, Marcel Dekker, New York, pp. 289 - 326.

    Google Scholar 

  • Goldstein, M. (1969) Viscous liquids and glass transition: a potential energy barrier picture, J. Chem. Phys, 51, 3728 - 3739.

    Article  CAS  Google Scholar 

  • Green, J.L., Fan, J. and Angell, C.A. (1994) The protein-glass analogy: some insights from homopeptide comparisons. J. Phys. Chem., 98, 13780-13790.

    Google Scholar 

  • Gregory, R.B. (1983) A comparison of analytically and numerically derived hydrogen - exchange rate distribution functions. Biopolymers, 22, 895 - 909.

    Article  CAS  Google Scholar 

  • Gregory, R.B. (1988) Influence of glycerol on hydrogen isotope exchange in Lysozyme. Biopolymers, 27, 1699 - 1709.

    Article  CAS  Google Scholar 

  • Gregory, R.B. (1995) Protein hydration and glass transition behavior. In Protein-Solvent Interactions, ed. R.B. Gregory, Marcel Dekker, New York, pp. 191 - 264.

    Google Scholar 

  • Gregory, R.B. and Chai, K-J. (1993a) A positron annihilation lifetime study of protein hydration. Biochem. Soc. Trans, 21, 4785.

    Google Scholar 

  • Gregory, R.B. and Chai, K-J. (1993b) A positron annihilation lifetime study of protein hydration - evidence for a glass transition. J. de. Phys, 3, 305 - 310.

    CAS  Google Scholar 

  • Gregory, R.B. and Lumry, R.W. (1985) Hydrogen exchange evidence for distinct structural classes in globular proteins. Biopolymers, 24, 301 - 326.

    Article  CAS  Google Scholar 

  • Gregory, R.B. and Lumry, R.W. (1986) Association of slow-exchanging protons with enzyme functional groups. Biophys. J, 49, 441a.

    Google Scholar 

  • Gregory, R.B. and Rosenberg, A. (1986)Protein conformational dynamics measured by hydrogen isotope exchange techniques. In Methods in Enzymology, eds C.H.W. Hirs and S.N. Timasheff, Academic Press, Orlando, Florida, Volume 131, pp. 448 - 508.

    Google Scholar 

  • Gregory, R.B., Crabo, L., Percy, A.J. and Rosenberg, A. (1983) Water catalysis of peptide hydrogen isotope exchange. Biochemistry, 22, 910 - 917.

    Article  CAS  Google Scholar 

  • Gregory, R.B., Gangoda, M., Gilpin, R.K. and Su, W. (1993) Influence of hydration on the conformation of lysozyme studied by solid-state 13C NMR spectroscopy.Biopolymers, 33, 513 - 519.

    CAS  Google Scholar 

  • Hilton, B.D. and Woodward, C.K. (1978) Nuclear magnetic resonance measurement of hydrogen exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biochemistry, 17, 3325 - 3332.

    Article  CAS  Google Scholar 

  • Hilton, B.D. and Woodward, C.K. (1979) On the mechanism of isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biochemistry, 18, 5834 - 5841.

    Article  CAS  Google Scholar 

  • Hurley, J.H. (1994) The role of interior side-chain packing in protein folding and stability. InThe Protein Folding Problem and Tertiary Structure Prediction, eds K. Merz and S. LeGrand, Birkhauser, Boston, pp. 549 - 578.

    Google Scholar 

  • Itzhaki, L.S., Otzen, D.E. and Fersht, A.R. (1995) The structure of the transition state for folding of chymotrypsin inhibitor. 2 Analyzed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J. Mol. Biol, 254, 260 - 288.

    Article  CAS  Google Scholar 

  • Jackie, J. (1986) Models of the glass transition. Rep. Prog. Phys, 49, 171 - 231.

    Article  Google Scholar 

  • Jeng, M-F, Englander, S.W., Elove, G. et al(1990) Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry, 29, 10433 - 10437.

    Article  CAS  Google Scholar 

  • Johari, G.P. and Goldstein, M. (1979) Viscous liquids and the glass transition. II Secondary relaxations in glasses of rigid molecules. J. Chem. Phys, 53, 2372 - 2388.

    Article  Google Scholar 

  • Kachalova, G.S., Morozov, V.N., Morozova, T.Y. et al(1991) Comparison of structures of dry and wet hen egg-white lysozyme molecule at 1.8 Ã… resolution. FEBS Lett, 284, 91 - 94.

    Article  CAS  Google Scholar 

  • Kim, K-S., Fuchs, J. and Woodward, C.K. (1993) Hydrogen exchange identifies native-state motional domains important in protein folding. Biochemistry, 32, 9600 - 9608.

    Article  CAS  Google Scholar 

  • Kivelson, D., Kivelson, S.A., Zhao, X. (1994) Frustration-limited clusters and behavior of supercooled liquids. In Lectures on Thermodynamics and Statistical Mechanics, eds M. Costas, R. Rodriguez and A.L. Benavides, World Scientific, Singapore, pp. 32 - 40.

    Google Scholar 

  • Klafter, J. and Shlesinger, M.F. (1986) On the relationship among three theories of relaxation in disordered systems. Proc. Natl. Acad. Sci. USA, 83, 848 - 851.

    Article  CAS  Google Scholar 

  • Kossiakoff, A. (1982) Protein dynamics investigated by the neutron diffraction-hydrogen exchange technique. Nature, 296, 713 - 721.

    Article  CAS  Google Scholar 

  • Lattman, E.E. and Rose, G.D. (1993) Protein Folding - What’s the Question? Proc. Natl.Acad. Sci. USA, 90, 439 - 441.

    Article  CAS  Google Scholar 

  • Levitt, M. (1981) Molecular dynamics of hydrogen bonds in bovine pancreatic trypsin inhibitor protein. Nature, 294, 379 - 380.

    Article  CAS  Google Scholar 

  • Likhtenshtein, G.I. (1985) Amorphous-crystalline model of intramolecular dynamics of globular proteins. Biofizika(in Russian), 30, 27 - 30.

    Google Scholar 

  • Likhtenshtein, G.I and Kotel’nikov, A.I. (1983) Study of the fluctuational intramolecular mobility of protein by the physical-label method. Mol. Biol. (Moscow), 17, 505-517

    Google Scholar 

  • Likhtenshtein G.I., Bogatyrenko, V.R. and Kulikov, A.V. (1993) Low temperature protein dynamics smdied by spin-labelling methods. Appl. Magn.Reson, 4, 513 - 521.

    Article  Google Scholar 

  • Lim, W.A. and Sauer, R.T. (1989) Alternative packing arrangements in the hydrophobic core of X repressor. Nature, 339, 31 - 36.

    Article  CAS  Google Scholar 

  • Locharich, RJ. and Brooks, B.R. (1990) Temperature dependence of dynamics of hydrated myoglobin. J. Mol. Biol, 215, 439 - 455.

    Article  Google Scholar 

  • Lumry,R.W. and Biltonen, R. (1969) Thermodynamic and kinetic aspects of protein conformations in relation to physiological function. In Structure and Stability of Biological Macromolecules, eds S. Timasheff and G.D. Fasman, Marcel Dekker, New York.

    Google Scholar 

  • Lumry, R.W. (1988) Mechanical force, hydration and conformational fluctuations in enzymic catalysis. In A Study of Enzymes, ed. S.A. Kuby, CRC Press, Boca Raton, Vol. II, pp. 3 - 81.

    Google Scholar 

  • Lumry, R.W. (1995) The new paradigm for protein research. In Protein-Solvent Interactions, ed. R.B. Gregory, Marcel Dekker, New York, pp. 1 - 141.

    Google Scholar 

  • Lumry, R.W. (1996) On the interpretation of data from isothermal processes. In Methods in enzymology, eds M. Johnson and G. Ackers, Academic Press,. New York, Volume 259, chap. 29.

    Google Scholar 

  • Lumry, R.W. and Rosenberg, A. (1975) The mobile-defect hypothesis of protein function. Colloq. Int. CNRS, 246, 53 - 61.

    Google Scholar 

  • Lumry, R.W. and Gregory, R.B. (1986) Free energy management in protein reactions: concepts, complications and compensation. In The Fluctuating Enzyme, ed. G.R. Welch, Wiley-Interscience, New York, pp. 1 - 190.

    Google Scholar 

  • Mason, S.A., Bentley, S.A. and Mclntyre (1984) Deuterium exchange in lysozyme at 1.4A resolution. In Neutrons in Biology, ed. B.P. Schoenborn, Plenum Press, New York, pp. 323 - 334.

    Google Scholar 

  • Miranker, A., Radford, S., Karplus, M. and Dobson, C. (1991) Demonstration by NMR of folding domains in lysozyme. Nature, 349, 633 - 636.

    Article  CAS  Google Scholar 

  • Morozov, V.N. and Morozova, T.Y. (1993) Elasticity of globular proteins. The relation between mechanics, thermodynamics and mobility. J. Biomol. Struct. Dynam, 11, 459 - 481.

    CAS  Google Scholar 

  • Murphy, K.P., Privalov, P.L. and Gill, S.J. (1990) Common features of protein unfolding and dissolution of hydrophobic compounds. Science, 247, 559 - 561.

    Article  CAS  Google Scholar 

  • Parak, F., Heidemeier, J. and Nienhaus, G.U. (1988) Protein structural dynamics as determined by Mossbauer spectroscopy. Hyperfine Interact, 40, 147 - 158.

    Article  CAS  Google Scholar 

  • Pethig, R. (1995) Dielectric studies of protein hydration. In Protein-Solvent Interactions, ed. R.B. Gregory, Marcel Dekker, New York, pp. 265 - 288.

    Google Scholar 

  • Pissis, P. (1989) Dielectric studies of protein hydration. J.Mol. Liquids, 41, 271 - 289.

    Article  CAS  Google Scholar 

  • Pissis, P. (1992) Glass transitions in biological systems. In Proton Transfer in Hydrogen Bonded Systems, ed. T. Bounds, NATO Adv. Study Inst. ser. B Physics, Volume 291, pp. 207 - 216.

    Google Scholar 

  • Plochocka, D., Zielenkiewicw, P. and Rabczenko, A. (1988) Hydrophobic microdomains as structural invariant regions in proteins. Protein Eng., 2., 115-118.

    Google Scholar 

  • Pohl, F.M. (1968) Kinetics of reversible denaturation of trypsin in water and water-ethanol mixtures. Eur. J. Biochem, 7, 146 - 152.

    Article  CAS  Google Scholar 

  • Poole, P.H., Sciortino, F., Grande, T. et al(1994) Effects of hydrogen bonds on the thermodynamic behavior of liquid water. Phys. Rev. Lett, 73, 1632 - 1635.

    Article  CAS  Google Scholar 

  • Poole, P.L. and Finney, J.L. (1983) Hydration-induced conformational and flexibility changes in lysozyme at low water content. Internat. J. Biol. Macromol, 5, 308 - 310.

    Article  CAS  Google Scholar 

  • Prestrelski, S.J., Tedeschi, N., Arakawa, T. and Carpenter, J. (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys. J, 65, 661 - 671.

    Article  CAS  Google Scholar 

  • Privalov, P.L. and Gill, S.J. (1988) Stability of protein structure and hydrophobic interaction. Adv. Protein Chem, 39, 191 - 234.

    Article  CAS  Google Scholar 

  • Provencher, S.W. (1982a) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun, 27, 213 - 227.

    Article  Google Scholar 

  • Provencher, S.W. (1982b) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput. Phys. Commun, 27, 229 - 242.

    Article  Google Scholar 

  • Radford, S., Buck, M., Topping, K. et al(1992) Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Protein Struct. Funct. Genet, 14, 237 - 248.

    Article  CAS  Google Scholar 

  • Radford, S., Dobson, C. and Evans, P. (1992) The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature, 358, 302 - 307.

    Article  CAS  Google Scholar 

  • Richarz, R., Sehr, P., Wagner, G. and Wuthrch, K. (1979) Kinetics of the exchange of individual amide protons in the basic pancreatic trypsin inhibitor. J. Mol. Biol, 130, 19 - 30.

    Article  CAS  Google Scholar 

  • Richert, R. and Blumen, A . (1994) Disordered systems and relaxation. In Disorder Effects on Relaxational Processes, eds R. Richert and A. Blumen, Springer-Verlag, Berlin, pp. 1 - 7

    Google Scholar 

  • Schoenborn, B.P. (ed.) (1984) Neutrons in Biology, Plenum Press, New York.

    Google Scholar 

  • Ringe, D. and Petsko, G. (1985) Mapping protein dynamics by X-ray diffraction. Prog. Biophys. Mol. Biol, 45, 197 - 235.

    Article  CAS  Google Scholar 

  • Roder, K., Elove, G. and Englander, S.W. (1988) Structural characterization of folding Intermediates in cytochrome c by hydrogen exchange labelling and proton NMR. Nature, 335, 700-7-4.

    Google Scholar 

  • Rupley, J.A. and Careri, G. (1991) Protein hydration and function. Adv. Protein Chem, 41, 37 - 172.

    Article  CAS  Google Scholar 

  • Rupley, J.A., Yang, P. and Tollin, G. (1980) Thermodynamic and related studies of water interacting with proteins. In Water in Polymers, ed. S.P. Rowland, American Chemical Society, Washington D.C., pp. 111 - 132.

    Chapter  Google Scholar 

  • Sartor, G., Mayer, R. and Johari, G.P. (1984) Calorimetric studies of the kinetic unfreezing of molecular motions in hydrated lysozyme, hemoglobin and myoglobin. Biophys. J, 66, 249 - 258.

    Article  Google Scholar 

  • Schinkel, I.E., Downer, N.W. and Rupley, J.A. (1985) Hydrogen exchange of lysozyme powders. Hydration dependence of internal motions. Biochemistry, 24, 352 - 366.

    Article  CAS  Google Scholar 

  • Schoenborn, B.P. (ed.) (1984) Neutrons in Biology, Plenum Press, New York.

    Google Scholar 

  • Schultz, D.J. (1976) Density in submolecular regions of globular proteins. Ph.D. dissertation, Princeton University.

    Google Scholar 

  • Segawa, S. and Sugihara, M. (1984) Characterization of the transition state of lysozyme unfolding. I. Effect of protein-solvent interactions on the transition state. Biopolymers, 23, 2473 - 2488.

    Article  CAS  Google Scholar 

  • Shah, N.K. and Ludescher, R.D. (1993) Influence of hydration on the internal dynamics of hen egg white lysozyme in the dry state. Photochem. Photobiol, 58, 169 - 174.

    Article  CAS  Google Scholar 

  • Sheriff, S., Hendrickson, W., Stenkamp, R. et al(1985) Influence of solvent accessibility and intermolecular contacts on atomic mobilities in hemerythrins. Proc. Natl. Acad. Sci. USA, 82, 1104 - 1107.

    Article  CAS  Google Scholar 

  • Slade, L., Levine, H. and Finley, J.W. (1989) Protein-Water interactions: water as a plasticizer of gluten and other protein polymers. In Protein Quality and the Effects of Processing, eds R.D. Phillips and J.W. Finley, Marcel Dekker, New York, pp. 9 - 124.

    Google Scholar 

  • Slade, L. and Levine, H. (1991) Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci, 30, 115 - 360.

    Article  CAS  Google Scholar 

  • Slade, L. and Levine, H. (1995) Glass transitions and water-food structure interactions. Adv. Food Nutr. Res, 38, 103 - 269.

    Article  CAS  Google Scholar 

  • Smith, J., Kuczera, K. and Karplus, M. (1990) Dynamics of myoglobin: comparison of simulation results with neutron scattering spectra. Proc. Natl. Acad. Sci. USA, 87, 1601 - 1605.

    Article  CAS  Google Scholar 

  • Sochava, I.V. and Smirnova, O.I. (1993) Heat capacity of hydrated and dehydrated globular proteins. Denaturation increment of heat capacity. Food Hydrocolloids, 6, 513 - 524.

    Article  CAS  Google Scholar 

  • Sochava, I.V., Belopol’skaya, T.V. and Smirnova, O.I. (1985) DSC study of reversible and irreversible thermal denaturation of concentrated globular protein solutions. Biophys. Chem, 22, 323 - 336.

    Article  CAS  Google Scholar 

  • Steinhoff, H.J., Lietenant, K. and Schlitter, J. (1989) Residual motion of hemoglobin-bound spin labels as a probe for protein dynamics. Z. Naturforsch. C: Biosci, 44, 280 - 288.

    CAS  Google Scholar 

  • Stillinger, F.H. (1995) A topographic view of supercooled liquids and glass formation. Science, 267, 1935 - 1939.

    Article  CAS  Google Scholar 

  • Strambini, G.B. and Gabellieri, E. (1984) Intrinsic phosphorescence from proteins in the solid state. Photochem. Photobiol, 39, 725 - 729.

    CAS  Google Scholar 

  • Tilton, R.F., Dewan, J.C. and Petsko, G.A. (1992) Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry, 31, 2469 - 2481.

    Article  CAS  Google Scholar 

  • Timasheff, S. (1995) Preferential interactions of water and cosolvents with proteins. In Protein-Solvent Interactions, ed. R.B. Gregory, Marcel Dekker, New York, pp. 445 - 482.

    Google Scholar 

  • Tuchsen, E., Hayes, J.M., Ramaprasad, S. et al(1987) Solvent exchange of buried water and hydrogen exchange of peptide NH groups hydrogen bonded to buried water in bovine pancreatic trypsin inhibitor. Biochemistry, 26, 5163 - 5172.

    Article  CAS  Google Scholar 

  • Tuchsen, E. and Woodward, C. (1985) Mechanism of surface peptide proton exchange in bovine pancreatic trypsin inhibitor. Salt effects and O-protonation. J. Mol. Biol, 185, 421 - 430.

    Article  CAS  Google Scholar 

  • Wedin, R.E., Delepiere, M., Dobson, C.M. and Poulsen, F.M. (1982) Mechanisms of hydrogen exchange in proteins from nuclear magnetic resonance studies of individual tryptophan indole NH hydrogens in lysozyme. Biochemistry, 21, 1098 - 1103.

    Article  CAS  Google Scholar 

  • Wlodawer, A. and Sjolin, L. (1982) Hydrogen exchange in RNase A: A neutron diffraction study. Proc. Natl. Acad. Sci. USA, 78, 1418 - 1422.

    Article  Google Scholar 

  • Woodward, C.K. and Hilton, B.D. (1980) Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys. J, 32, 561 - 575.

    Article  CAS  Google Scholar 

  • Woodward, C., Simon, I. and Tuchsen, E. (1982) Hydrogen exchange and the dynamic structure of proteins. Mol Cell. Biochem, 48, 135 - 160.

    Article  CAS  Google Scholar 

  • Wuthrich, K. and Wagner, G. (1979) Nuclear magnetic resonance of labile protons in the basic pancreatic trypsin inhibitor. J. Mol. Biol, 130, 1 - 18.

    Article  CAS  Google Scholar 

  • Yang, P. and Rupley, J.A. (1979) Protein-water interactions. Heat capacity of the lysozyme-water system. Biochemistry, 18, 2654 - 2661.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Thomson Science

About this chapter

Cite this chapter

Gregory, R.B. (1998). Protein hydration and glass transitions. In: Reid, D.S. (eds) The Properties of Water in Foods ISOPOW 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0311-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0311-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7991-1

  • Online ISBN: 978-1-4613-0311-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics