Skip to main content

Correlated RPA Calculations for Model Nuclear Matter

  • Chapter
Condensed Matter Theories
  • 135 Accesses

Abstract

One of the most exciting prospects on the current nuclear scene is the promise that precision high-energy electron scattering experiments will reveal new (and perhaps unforetold) aspects of nuclear structure and dynamics. The search is on for distinctive signatures of subnucleonic degrees of freedom, and especially for manifestations of the underlying quarkic substructure of nuclei. However, to reach any definite conclusions regarding such effects, it is necessary that we know, with precision, the values which are predicted for the measured quantities by the conventional picture of nuclei. In the conventional picture, a nucleus is composed of nucleus alone, moving nonrelativistically. The nucleonic constituents are considered to interact via bare potentials which reproduce the few-nucleon data while obeying certain constraints imposed by fundamental symmetries and by meson-exchange theory. Even at this rather superficial level, one is confronted with a very difficult many-body problem, essentially nonpertubative because of the strong short-range interactions among the nucleons. It should therefore be no surprise that mean-field theory (in old language, the shell model) fails in experimental settings where large momentum transfers take place and the high-momentum components of the nuclear wave function are being probed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Fantoni and V. R. Pandharipande, Nucl. Phys. A473, 234 (1987).

    CAS  Google Scholar 

  2. A. Fabrocini and S. Fantoni, Nucl. Phys. A, in press.

    Google Scholar 

  3. E. Feenberg, Theory of Quantum Fluids (Academic, New York, 1969).

    Google Scholar 

  4. J. W. Clark and E. Krotscheck, Springer Lecture Notes in Physics 198, 127 (1984).

    Article  CAS  Google Scholar 

  5. J. M. C. Chen, J. W. Clark, and D. G. Sandler, Zeits. Physik A305, 223 (1982).

    Google Scholar 

  6. E. Krotscheck, Phys. Rev. A 26, 3536 (1962).

    Article  Google Scholar 

  7. V. R. Pandharipande, R. B. Wiringa, and B. D. Day, Phys. Lett. 57B, 205 (1975).

    Google Scholar 

  8. N.-H. Kwong, Ph.D. thesis, California Institute of Technology (1982), unpublished

    Google Scholar 

  9. E. Mavrommatis, R. Dave, and J. W. Clark, in Condensed Matter Theories, Vol. 2, ed. P. Vashishta, R. K. Kalia and R. F. Bishop (Plenum, New York, 1987), p. 249.

    Google Scholar 

  10. E. Krotscheck, R. A. Smith, J. W. Clark, and R. M. Panoff, Phys. Rev. B 24, 6383 (1981).

    Article  CAS  Google Scholar 

  11. E. Krotscheck, in Quantum Fluids and Solids, Sanibel, Florida, 1983, ed. E. D. Adams and G. G. Ihas (AIP, New York, 1983), p. 132.

    Google Scholar 

  12. G. E. Brown, Many Body Problems (North-Holland, Amsterdam, 1972).

    Google Scholar 

  13. W. M. Alberico, R. Cenni, and A. Molinari, Riv. del Nuovo Cim. 1, 1 (1978).

    Article  Google Scholar 

  14. W. Czyż and K. Gottfried, Ann. of Phys. 21, 47 (1963).

    Article  Google Scholar 

  15. F. Green, D. N. Lowy, and J. Szymanski, Phys. Rev. Lett. 48, 638 (1982).

    Article  CAS  Google Scholar 

  16. C. H. Aldrich III and D. Pines, J. Low Temp. Phys. 25, 677 (1976); 32, 689 (1978).

    Google Scholar 

  17. D. Pines, K. F. Quader, and J. Wambach, Nucl. Phys. A477, 365 (1988).

    CAS  Google Scholar 

  18. J. W. Clark, Prog. Part. Nucl. Phys. 2, 89 (1979); and references cited therein.

    Google Scholar 

  19. A. Ramos, A. Polls, and W. H. Dickhoff, Nucl. Phys. A, in press.

    Google Scholar 

  20. D. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 16, 3081 (1977).

    Article  CAS  Google Scholar 

  21. O. Benhar, C. Ciofi degli Atti, A. Kallio, L. Lantto, and P. Toropainen, Phys. Lett. 60B, 129 (1976); O. Benhar, C. Ciofi degli Atti, S. Fantoni, S. Rosati, A. Kallio, L. Lantto, and P. Toropainen, Phys. Lett. 64B, 395 (1976).

    CAS  Google Scholar 

  22. J. W. Clark and M. L. Ristig, Phys. Rev. C 5, 1553 (1972).

    Article  Google Scholar 

  23. M. F. Flynn, private communication.

    Google Scholar 

  24. Z. E. Meziani et al., Phys. Rev. Lett. 52, 2130 (1984).

    Google Scholar 

  25. M. Deady et al, Phys. Rev. C 33, 1897 (1986).

    Article  CAS  Google Scholar 

  26. C. C. Blatchley et al, Phys. Rev. C 34, 1243 (1986).

    Article  CAS  Google Scholar 

  27. D. B. Day et al, Phys. Rev. C 40, 1011 (1989).

    Article  CAS  Google Scholar 

  28. J. M. Laget, Springer Lecture Notes in Physics 137, 148 (1981); Physics Reports 69, 1 (1981).

    CAS  Google Scholar 

  29. 29. J. W. van Orden, Ph.D. thesis, Stanford University (1978), unpublished.

    Google Scholar 

  30. R. Rosenfelder, Ann. of Phys. 128, 188 (1980).

    Article  CAS  Google Scholar 

  31. R. D. Dave, private communication.

    Google Scholar 

  32. J. P. Blaizot and B. L. Friman, Nucl. Phys. A372, 69 (1981).

    CAS  Google Scholar 

  33. E. Krotscheck, J. W. Clark, and A. D. Jackson, Phys. Rev. B 28, 5088 (1983).

    Article  CAS  Google Scholar 

  34. W. H. Dickhoff, private communication.

    Google Scholar 

  35. A. Dellafiore and F. Matera, Phys. Rev. C 40, 960 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Mavrommatis, E., Clark, J.W. (1990). Correlated RPA Calculations for Model Nuclear Matter. In: Aguilera-Navarro, V.C. (eds) Condensed Matter Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0605-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0605-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7888-7

  • Online ISBN: 978-1-4613-0605-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics