Skip to main content

Rodent Models To ExamineIn Vivo Hormonal Regulation of Mammary Gland Tumorigenesis

  • Chapter
Cellular and Molecular Biology of Mammary Cancer

Abstract

The experimental demonstration of the influence of hormones on the genesis of mammary tumors in rodents was begun in 1913 by Lathrop and Loeb, who demonstrated that mammary tumors were more frequent in outbred multiparous mice than in nulliparous mice of the same strain (1). Three years later, Lathrop and Leob reported that ovariectomy of mice at an early age either completely inhibited or greatly delayed the appearance of mammary tumors (2). Since these reports, countless numbers of studies have been reported documenting the exquisite control by the endocrine system of the genesis, development and growth of the rodent mammary tumor. The purpose of this chapter is to provide an assemblage of the currentin vivo mouse and rat mammary tumor models most commonly utilized by the tumor biologist intent on understanding mammary tumor — hormonal regulatory processes; a succinct review of the endocrine responsiveness of these mammary tumor models is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lathrop, A.E.C., and Loeb, L. The influences of pregnancies on the incidence of cancer in mice. Proc. Soc. Exptl. Biol. Med., 11: 38– 40, 1913.

    Google Scholar 

  2. Lathrop, A.E.C., and Loeb, L. Further investigation on the origin of tumors in mice. III. On the art played by internal secretion in the spontaneous development of tumors. J. Cancer Res., 1: 1– 19, 1916.

    PubMed  CAS  Google Scholar 

  3. Welsch,C.W. Hormones and murine mammary gland tumorigenesis: an historical view.In: B.S. Leung (ed.), Hormonal Regulation of Mammary Tumors, Vol. 1, pp. 1–29. Montreal: Eden Press Inc., 1982.

    Google Scholar 

  4. Welsch, C.W., Adams, C., Lambrecht, L.K., Hassett, C.C., and Brooks, C.L. 17β-Oestradiol and enovid mammary tumorigenesis in C3H/HeJ female mice: counteraction by concurrent 2-bromo-α-ergocryptine. Br. J. Cancer, 35: 322– 328, 1977.

    CAS  Google Scholar 

  5. Bonser, G.M. The effect of oestrone administration on the mammary glands of male mice of two strains differing greatly in their susceptibility to spontaneous mammary carcinoma. J. Pathol. Bacteriol., 42: 169– 181, 1936.

    CAS  Google Scholar 

  6. Rudali, G., Apiou, F., and Muel, B. Mammary cancer produced in mice with estriol. Europ. J. Cancer, 11: 39–31, 1975.

    CAS  Google Scholar 

  7. Shimkin, M.B., and Grady, H.G. Mammary carcinomas in mice following oral administration of stilbestrol. Proc. Soc. Exptl. Biol. Med., 45: 246–248, 1940.

    CAS  Google Scholar 

  8. Trentin, J.J. Effect of long-term treatment with high levels of progesterone on the incidence of mammary tumors in ice. Proc. Am. Assoc. Cancer Res., 1: 50, 1954.

    Google Scholar 

  9. Muhlbock, O., and Boot, L.M. Induction of mammary cancer in mice without the mammary tumor agent by isografts of hypophyses. Cancer Res., 19: 402–412, 1959.

    PubMed  CAS  Google Scholar 

  10. Haran-Ghera, N. The role of mammotrophin in mammary tumor induction in mice. Cancer Res., 21: 790–795, 1961.

    PubMed  CAS  Google Scholar 

  11. Lacassagne, A., and Duplan, J.F. Le mecanisme de la cancerisation de la mamelle chez la soures considere d’apres les resultats d’experiences au mojen de la reserpine. C.R. Soc. Biol. (Paris), 249: 810– 812, 1959.

    CAS  Google Scholar 

  12. Bruni, J.E., and Montemurro, D.G. Effect of hypothalamic lesions on the genesis of spontaneous mammary gland tumors in the mouse. Cancer Rec., 31: 854–863, 1971.

    CAS  Google Scholar 

  13. Boot, L.M., Muhlbock, D., and Ropcke, G. Prolactin and the induction of mammary tumors in mice. Gen. Comp. Endocrinol., 2: 601–603, 1962.

    Google Scholar 

  14. Yanai, R., and Nagasawa, H. Enhancement by pituitary isografts of mammary hyperplastic nodules in adreno-ovariectomized mice. J. Natl. Cancer Inst., 46: 1251–1255, 1971.

    PubMed  CAS  Google Scholar 

  15. Bern, H., and Nandi, S. Recent studies of the hormonal influence in mouse mammary tumorigenesis. Progr. Exptl. Tumor Red., 2: 90–144, 1961.

    CAS  Google Scholar 

  16. Welsch, C.W., and Gribler, C. Prophylaxis of spontaneously developing mammary carcinoma in C3H/HeJ female mice by suppression of prolactin. Cancer Res., 33: 2939– 2946, 1973.

    PubMed  CAS  Google Scholar 

  17. Vonderhaar, B.K., and Greco, A.E. Effect of thyroid status on development of spontaneous mammary tumors in primiparous C3H mice. Cancer Res., 42: 4553–4561, 1982.

    PubMed  CAS  Google Scholar 

  18. Kurachi, H., Okamoto, S., and Oka, T. Evidence for the involvement of the submandibular gland epidermal growth factor in mouse mammary tumorigenesis. Proc. Natl. Acad. Sci. (USA), 82: 5940–5943, 1985.

    CAS  Google Scholar 

  19. van Nie, R. and Dux, A. Biological and morphological characteristics of mammary tumors in GR mice. J. Natl. Cancer Inst., 46: 885–897, 1971.

    PubMed  Google Scholar 

  20. van der Valk, M.A. Survival, tumor incidence and gross pathology in 33 mouse strains,In: J. Hilgers and M. Sluyser (eds.), Mammary Tumors in the Mouse, pp. 45–115. Amsterdam: Elsevier/North- Holland Biomedical Press, 1981.

    Google Scholar 

  21. van der Gugten, A.A., Ropcke, G., van Nie, R., and Hilgers, J. Mouse strain (STS/A) resistant to mammary tumor induction by hypophysial isografts. Cancer Res., 45: 3448–3453, 1985.

    PubMed  Google Scholar 

  22. Medina, D. Preneoplastic lesions in mouse mammary tumorigenesis. Methods Cancer Res., 7: 3– 53, 1973.

    CAS  Google Scholar 

  23. DeOme, K.B., Faulkin, L.J., Bern, H.A., and Blair, P.B. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res., 19: 515–520, 1959.

    PubMed  CAS  Google Scholar 

  24. Foulds, L. The histological analysis of mammary tumors in mice. I- VI. J. Natl. Cancer Inst., 17: 701– 801, 1956.

    CAS  Google Scholar 

  25. Welsch, C.W. Prolactin and the development and progression of early neoplastic mammary gland lesions. Cancer Res., 38: 4054–4058, 1978.

    PubMed  CAS  Google Scholar 

  26. Yanai, R., and Nagasawa, H. Effect of progesterone and estrogen on DNA synthesis of pregnancy-dependent mammary tumors in GR/A mice. Europ. J. Cancer, 13: 813–816, 1977.

    CAS  Google Scholar 

  27. Welsch, C.W., Goodrich-Smith, M., Brown, C.K., and Wilson, M. Inhibition of mammary tumorigenesis in GR mice with 2-bromo-α- ergocryptine. Int. J. Cancer, 24: 92–96, 1979.

    PubMed  CAS  Google Scholar 

  28. Cardiff, R.D. Protoneoplasia: the molecular biology of murine mammary hyperplasia. Adv. Cancer Res., 42: 167–190, 1984.

    CAS  Google Scholar 

  29. Faulkin, L.J., Mitchell, D.J., Young, L.J.T., Morris, D.W., Malone, R.W., Cardiff, R.D., and Gardner, M.B. Hyperplastic and neoplastic changes in the mammary glands of feral mice free of endogenous mouse mammary tumor virus provirus. J. Natl. Cancer Inst., 73: 971–982, 1984.

    PubMed  CAS  Google Scholar 

  30. Medina, D. Preneoplastic lesions in murine mammary cancer. Cancer Res., 36: 2589–2595, 1976.

    PubMed  CAS  Google Scholar 

  31. Medina, D. Mammary tumorigenesis in chemical carcinogen-treated mice. II. Dependence on hormone stimulation for tumorigenesis. J. Natl. Cancer Inst., 53: 223–226, 1974.

    PubMed  CAS  Google Scholar 

  32. Medina, D. Mammary tumorigenesis in chemical carcinogen-treated mice. I. Incidence in BALB/c and C57BL mice. J. Natl. Cancer Inst., 53: 213–221, 1974.

    PubMed  CAS  Google Scholar 

  33. Medina, D., and Warner, M.R. Mammary tumorigenesis in chemical carcinogen-treated mice. IV. Induction of mammary ductal hyperplasias. J. Natl. Cancer, Inst., 57: 331–337, 1976.

    CAS  Google Scholar 

  34. Haran-Ghera, N. The role of hormones in mammary tumorigenesis. Acta Union Internatl. Contre Le Cancer, 18: 207–210, 1962.

    Google Scholar 

  35. Haran-Ghera, N. Autonomy and dependence of preneoplastic mammary nodules in mice. Br. J. Cancer, 19: 816–823, 1965.

    PubMed  CAS  Google Scholar 

  36. Medina, D., Butel, J.S., Socher, S.H., and Miller, F.L. Mammary tumorigenesis in 7,12-dimethylbenzanthracene treated C57BL x DBA/2F-L mice. Cancer Res., 40: 368–373, 1980.

    PubMed  CAS  Google Scholar 

  37. Sluyser, M., DeGoeij, C.C.J., and Evers, S.G. Outgrowth of grafts containing different ratios of hormone-dependent and independent mammary tumor cells. Cancer Letters, 13: 71–77, 1981.

    PubMed  CAS  Google Scholar 

  38. Sluyser, M., DeGoiej, C.C.J., and Evers, S.G. Combined endocrine therapy and chemotherapy of mouse mammary tumors. Europ. J. Cancer, 17: 155–159, 1981.

    CAS  Google Scholar 

  39. Briand, P., Thorpe, S.M., and Daehnfeldt, J.L. Effect of prolactin and bromocriptine on growth of transplanted hormone-dependent mouse mammary tumours. Br. J. Cancer, 35: 816–821, 1977.

    PubMed  CAS  Google Scholar 

  40. Matsuzawa, A. Progesterone effect on tumor growth and development.In: B.S. Leung (ed.), Hormonal Regulation of Mammary Tumors, Vol. 1, pp. 183–215. Montreal: Eden Press Inc., 1982.

    Google Scholar 

  41. Matsumoto, K., Sato, B., and Kitamura, Y. Roles of androgen and its receptors in mouse mammary tumor. In: B.S. Leung (ed.), Hormonal Regulation of Mammary Tumors, Vol. 1, pp. 216–244. Montreal: Eden Press Inc., 1982.

    Google Scholar 

  42. Matsumoto, A., Yamamoto, T., and Mizuno, Y. An ovary-dependent mouse mammary tumor induced by urethan. Gann, 68: 523–524, 1977.

    Google Scholar 

  43. Watson, C., Medina, D., and Clark, J.H. Estrogen receptor characterization in a transplantable mouse mammary tumor. Cancer Res., 37: 3344–3348, 1977.

    PubMed  CAS  Google Scholar 

  44. Watson, C.S., Medina, D., and Clark, J.H. Characterization and estrogen stimulation of cytoplasmic progesterone receptor in the ovarian-dependent MXT-3590 mammary tumor line. Cancer Res., 39: 4098–4104, 1979.

    PubMed  CAS  Google Scholar 

  45. Braunschweiger, P.G., and Schiffer, L.M. Antiproliferative effects of corticosteroids in C3H/HeJ mammary tumors and implications for sequential combination chemotherapy. Cancer Res., 41: 3324– 3330, 1981.

    PubMed  CAS  Google Scholar 

  46. Medina, D. Mammary tumorigenesis in chemical carcinogen-treated mice. VI. Tumor-producing capabilities of mammary dysplasias in BALB/cCrgl mice. J. Natl. Cancer Inst., 57: 1185–1189, 1976.

    PubMed  CAS  Google Scholar 

  47. Medina, D. Tumor formation in preneoplastic mammary nodule lines in mice treated with nafoxidine, testosterone, and 2-bromo-α- ergocryptine. J. Natl. Cancer Inst., 58: 1107–1110, 1977.

    PubMed  CAS  Google Scholar 

  48. Medina, D. Serial transplantation of chemical carcinogen-induced mouse mammary ductal dysplasias. J. Natl. Cancer Inst., 62: 397–405, 1979.

    PubMed  CAS  Google Scholar 

  49. Aidells, B.D., and Daniel, C.W. Hormone-dependent mammary tumors in strain GR/A mice. I. Alteration between ductal and tumorous phases of growth during serial transplantation. J. Natl. Cancer Inst., 52: 1855– 1863, 1974.

    PubMed  CAS  Google Scholar 

  50. Aidells, B.D., and Daniel, C.W. Hormone-dependent mammary tumors in GR/A mice. III. Effectiveness of supplementary hormone treatments in inducing tumorous phase growth. J. Natl. Cancer Inst., 57: 527–537 1976.

    PubMed  CAS  Google Scholar 

  51. Dux, A., and Muhlbock, 0. Enhancement by hypophyseal hormones of the malignant transformation of transplanted hyperplastic nodules of the mouse mammary gland. Europ. J. Cancer, 5: 191–194, 1969.

    CAS  Google Scholar 

  52. Noble, R.L., and Cutts, J.H. Mammary tumors of the rat: a review. Cancer Res., 19: 1125–1139, 1959.

    PubMed  CAS  Google Scholar 

  53. Welsch, C.W., Jenkins, T.W., and Meites, J. Increased incidence of mammary tumors in the female rat grafted with multiple pituitaries. Cancer Res., 30: 1024–1029, 1970.

    PubMed  CAS  Google Scholar 

  54. Durbin, P.W., Williams, M.H., Jeung, N., and Arnold, J.S. Development of spontaneous mammary tumors over the life-span of the female Charles River (Sprague-Dawley) rat; the influence of ovariectomy, thyroidectomy, and adrenalectomy-ovariectomy. Cancer Res., 26: 400–411, 1966.

    PubMed  CAS  Google Scholar 

  55. Moon, H.D., Simpson, M.E., Li, C.H., and Evans, H.M. Neoplasms in rats treated with pituitary growth hormone. V. Absence of neoplasms in hypophysectomized rats. Cancer Res., 11: 535–539, 1951.

    PubMed  CAS  Google Scholar 

  56. Cutts, J.H., and Noble, R.L. Estrone-induced mammary tumors in the rat. I. Induction and behavior of tumors. Cancer Res., 24: 1116– 1123, 1964.

    PubMed  CAS  Google Scholar 

  57. Cutts, J.H. Estrogen-induced breast cancer in the rat.In: Proceedings of the Sixth Canadian Cancer Research Conf., Honey Harbour, Ontario, pp. 50–68. New York: Pergamon Press Inc., 1965.

    Google Scholar 

  58. Cutts, J.H. Estrone-induced mammary tumors in the rat. II. Effect of alterations in the hormonal environment on tumor induction, behavior, and growth. Cancer Res., 24: 1124–1130, 1964.

    CAS  Google Scholar 

  59. Welsch, C.W., Nagasawa, H., and Meites, J. Increased incidence of spontaneous mammary tumors in female rats with induced hypothalamic lesions. Cancer Res., 30: 2310–2313, 1970.

    PubMed  CAS  Google Scholar 

  60. Geschickter, C.F., and Byrnes, E.W. Factors influencing the development and time of appearance of mammary cancer in the rat in response to estrogen. Arch. Pathol., 33: 334–356, 1942.

    CAS  Google Scholar 

  61. Quadri, S.K., and Meites, J. Regression of spontaneous mammary tumors in rats by ergot drugs. Proc. Soc. Exptl. Biol. Med., 138: 999–1001, 1971.

    CAS  Google Scholar 

  62. Welsch, C.W. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res., 45: 3415–3443, 1985.

    PubMed  CAS  Google Scholar 

  63. Welsch, C.W. Prolactin and murine mammary tumorigenesis: a review. Cancer Res., 37: 951– 963, 1977.

    PubMed  CAS  Google Scholar 

  64. Welsch, C.W., Brown, C.K., Goodrich-Smith, M., Chiusano, J., and Moon, R.C. Synergistic effect of chronic prolactin suppression and retinoid treatment in the prophylaxis of N-methyl-N-nitrosourea- induced mammary tumorigenesis in female Sprague-Dawley rats. Cancer Res., 40: 3095– 3098, 1980.

    PubMed  CAS  Google Scholar 

  65. Rose, D.P., and Noonan, J.J. Influence of prolactin and growth hormone on rat mammary tumors induced by N-nitrosomethylurea. Cancer Res., 42: 35–38, 1982.

    PubMed  CAS  Google Scholar 

  66. Arafah, B.M., Finegan, H.M., Roe, J., Manni, A., and Pearson, O.H. Hormone dependence in N-nitrosomethylurea-induced rat mammary tumors. Endocrinology, 111: 584–588, 1982.

    PubMed  CAS  Google Scholar 

  67. Rose, D.P., and Noonan, J.J. Hormone dependence of rat mammary tumors induced by N-nitrosomethylurea. Europ. J. Cancer Clin. Oncol., 17: 1357–1358, 1981.

    PubMed  CAS  Google Scholar 

  68. Nagasawa, H., and Yanai, R. Effects of prolactin or growth hormone on growth of carcinogen-induced mammary tumors of adreno-ovariectomized rats. Int. J. Cancer, 6: 488–495, 1970.

    PubMed  CAS  Google Scholar 

  69. King, D.T., and Kennedy, B.J. Combination of cyclophosphamide and estrogen therapy in DMBA-induced rat mammary cancer. Cancer, 28: 1202–1210, 1971.

    Google Scholar 

  70. Sterental, A., Dominquez, J.M., Weisman, C., and Pearson, O.H. Pituitary role in the estrogen dependency of experimental mammary cancer. Cancer Res., 23: 481–484, 1963.

    PubMed  CAS  Google Scholar 

  71. Jabara, A.G., Toyne, P.H., and Harcourt, A.G. Effects of time and duration of progesterone administration on mammary tumors induced by 7,12-dimethylbenzanthracene is Sprague-Dawley rats. Br. J. Cancer, 27: 63–71, 1973.

    PubMed  CAS  Google Scholar 

  72. Asselin, J., Kelly, P.A., Caron, M.G., and Labrie, F. Control of hormone receptor levels and growth of 7,12-dimethylbenzanthracene-induced mammary tumors by estrogens, progesterone and prolactin. Endocrinology, 101: 666– 671, 1977.

    PubMed  CAS  Google Scholar 

  73. Grubbs, C.J., Peckham, J.C., and McDonough, K.D. Effect of ovarian hormones on the induction of 1-methyl-1-nitrosourea-induced mammary cancer. Carcinogenesis, 4: 495–497, 1983.

    PubMed  CAS  Google Scholar 

  74. Aylsworth, C.F., Sylvester, P.W., Leung, F.C., andMeites, J. Inhibition of mammary tumor growth by dexamethasone in rats in the presence of high serum prolactin levels. Cancer Res., 40: 1863–1866, 1980.

    PubMed  CAS  Google Scholar 

  75. Heuson, J.C., Legros, N., and Heimann, R. Influence of insulin administration on growth of the 7,12-dimethylbenzanthracene-induced mammary carcinoma in intact, oophorectomized, and hypophysectomized rats. Cancer Res., 32: 233–238, 1972.

    PubMed  CAS  Google Scholar 

  76. Goodman, A.D., Hoekstra, S.J., and Marsh, P.S. Effects of hypothyroidism on the induction and growth of mammary cancer induced by 7,12-dimethylbenzanthracene in the rat. Cancer Res., 40: 2336–2342, 1980.

    PubMed  CAS  Google Scholar 

  77. Armuth, V., and Berenblum, I. Promotion of mammary carcinogenesis and leukemogenic action by phorbol in virgin female Wistar rats. Cancer Res., 34: 2704–2707, 1974.

    PubMed  CAS  Google Scholar 

  78. Shellabarger, C.J., Holtzman, S., and Stone, J.P. Apparent rat strain-related sensitivity to phorbol promotion of mammary carcinogenesis. Cancer Res., 39: 3345–3348, 1979.

    PubMed  CAS  Google Scholar 

  79. Shellabarger, C.J. Pituitary and steroid hormones in radiation-induced mammary tumors.In: M.C. Pike, P.K. Siiteri, C.W. Welsch (eds.), Banbury Report #8, Hormones and Breast Cancer, pp. 339–351. Cold Spring Harbor: Cold Spring Harbor Laboratory, 1981.

    Google Scholar 

  80. Takizawa, S., Naito, Y., Watanabe, H., and Hirose, F. Effect of ovariectomy on x-ray carcinogenesis in rats. Gann, 69: 353–360, 1978.

    PubMed  CAS  Google Scholar 

  81. Welsch, C.W., Goodrich-Smith, M., Brown, C.K., Miglorie, N., and Clifton, K.H. Effect of an estrogen antagonist (tamoxifen) on the initiation and progression of γ-irradiation-induced mammary tumors in female Sprague-Dawley rats. Europ. J. Cancer Clin. Oncol., 17: 1255–1258, 1981.

    PubMed  CAS  Google Scholar 

  82. Goodrich-Smith, M., Brown, C.K., and Welsch, C.W. Comparative effects of prolactin suppression and estrogen antagonism on the genesis of γ-irradiation induced mammary tumors in female Sprague-Dawley rats. The Physiologist, 23: 133, 1980.

    Google Scholar 

  83. Holtzman, S., Stone, J.P., and Shellabarger, C.J. Synergism of estrogens and x-rays in mammary carcinogenesis in female ACI rats. J. Natl. Cancer Inst., 67: 455– 59, 1981.

    PubMed  CAS  Google Scholar 

  84. Ito, A., Naito, M., Watanabe, H., and Yokoro, K. Prolactin and aging: x-irradiated and estrogen-induced rat mammary tumorigenesis, J. Natl. Cancer Inst., 73: 123–126, 1984.

    PubMed  CAS  Google Scholar 

  85. Clifton, K.H., and Crowley, J.J. Effects of radiation type and dose and the role of glucocorticoids, gonadectomy, and thyroidectomy in mammary tumor induction in mammotrophin-secreting pituitary grafted rats. Can Res., 38: 1507–1513, 1978.

    CAS  Google Scholar 

  86. Segaloff, A. Inhibition by progesterone of radiation-estrogen-induced mammary cancer in the rat. Cancer Res., 33: 1136–1137, 1973.

    PubMed  CAS  Google Scholar 

  87. Kim, U., and Depowski, M.J. Progression from hormone dependence to autonomy in mammary tumors as in vivo manifestation of sequential clonal selection. Cancer Res., 35 2068–2077, 1975.

    PubMed  CAS  Google Scholar 

  88. Kim, U., Furth, J., and Clifton, K.H. Relation of mammary tumors to mammotropes. III. Hormone responsiveness of transplanted mammary tumors. Proc. Soc. Exptl. Biol. Med., 103: 646–650, 1960.

    CAS  Google Scholar 

  89. MacLeod, R.M., Allen, M.S., and Hollander, V.P. Hormonal requirements for the growth of mammary adenocarcinoma (MTW9) in rats. Endocrinology, 75: 249–258, 1964.

    PubMed  CAS  Google Scholar 

  90. Diamond, E.J., Koprak, S., and Hollander, V.P. Effect of high-dose progesterone on growth of rat mammary carcinoma. Cancer Res., 40: 1091–1096, 1980.

    PubMed  CAS  Google Scholar 

  91. Sirbasku, D.A. Hormone-responsive growthin vivoof a tissue culture cell line established from the MT-W9A rat mammary tumor. Cancer Res., 38: 1154–1165, 1978.

    PubMed  CAS  Google Scholar 

  92. Segaloff, A. Hormones and breast cancer. Rec. Prog. Hormone Res., 22: 351–379, 1966.

    CAS  Google Scholar 

  93. Bogden, A.E., Taylor, D.J., Kuo, E.Y.H., Manson, M.M., and Sperapoulos,A. The effect of perphenazine-induced serum prolactin response on estrogen-primed mammary tumor-host systems, 13762 and R-35 mammary adenocarcinomas. Cancer Res., 34: 3018–3025, 1974.

    PubMed  CAS  Google Scholar 

  94. Harada, Y. Pituitary role in the growth of metastasizing MRMT-1 mammary carcinoma in rats. Cancer Res., 36: 18–22, 1976.

    PubMed  CAS  Google Scholar 

  95. King, M.M., Magarian, R.A., Terao, J., and Brueggemann, G.L. Effects of nonsteroidal antiestrogens, analog II and tamoxifen, on a metastatic transplantable rat mammary tumor. J. Natl. Cancer Inst., 74: 447– 451, 1985.

    PubMed  CAS  Google Scholar 

  96. Sonnenschein, C., Ucci, A.A., and Soto, A.M. Age-dependent growth inhibition of estrogen-sensitive rat mammary tumors. Probable role of alpha-fetoprotein. J. Natl. Cancer Inst., 64: 1141–1146, 1980.

    CAS  Google Scholar 

  97. Hilf, R., Freeman, J.J., Inge, M., and Borman, A. Characterization of a transplantable lactating mammary tumor: endocrinological, morphological and biochemical aspects. Cancer Res., 24: 812–814, 1964.

    PubMed  CAS  Google Scholar 

  98. Cohen, N.D., and Hilf, R. Influence of insulin on estrogen-induced responses in the R3230AC mammary carcinoma. Cancer Res., 35: 560–567, 1975.

    PubMed  CAS  Google Scholar 

  99. Noble, R.L. Hormonal control of growth and progression in tumors of Nb rats and a theory of action. Cancer Res., 37: 82–94, 1977.

    PubMed  CAS  Google Scholar 

  100. Horn, T.M., and Kano-Sueoka, T. Effects of hormones on growth andα-lactalbumin activity in the transplantable rat mammary tumor MCCLX. Can Res., 39: 5028–5035, 1979.

    CAS  Google Scholar 

  101. Pantelouris, E.M. Absence of thymus in a mouse mutant. Nature, 217: 370–371, 1968.

    PubMed  CAS  Google Scholar 

  102. Ryaard, J., and Povlsen, C.0. Heterotransplantation of a human malignant tumour to “nude” mice. Acta Pathol. Microbiol. Scand., 77: 758–760, 1969.

    Google Scholar 

  103. Daniel, C.W., Shannon, J.M., and Cunha, g.R. Transplanted mammary epithelium grows in association with host stroma: aging of serially transplanted mammary gland is intrinsic to epithelial cells. Mech. Aging Develop., 23: 259–264, 1983.

    CAS  Google Scholar 

  104. Welsch, C.W., O’Connor, D.H., Aylsworth, C.F., and Sheffield, L.G. Comparative acceptance rate of the xenogeneic normal and carcinomatous mammary gland upon transplantation to athymic nude mice. 14th Internatl. Cancer Congr., p. 67. Budapest, Hungary, 1986.

    Google Scholar 

  105. Welsch, C.W., McManus, M.J., DeHoog, J.V., Goodman, G.T., and Tucker, H.A. Hormone-induced growth and lactogenesis of grafts of bovine mammary gland maintained in the athymic “nude” mouse. Cancer Res., 39: 2046–2050, 1979.

    PubMed  CAS  Google Scholar 

  106. Sheffield, L.G., and Welsch, C.W. Transplantation of bovine mammary epithelium subcutaneously and into the mammary gland free fat pads of athymic nude mice. J. Dairy Sci., in press.

    Google Scholar 

  107. McManus, M.J., and Welsch, C.W. DNA synthesis of benign human breast tumors in the untreated athymic “nude” mouse. Cancer, 45: 2160–2165, 1980.

    PubMed  CAS  Google Scholar 

  108. McManus, M.J., and Welsch, C.W. Hormone-induced ductal DNA synthesis of human breast tissues maintained in the athymic nude mouse. Cancer Res., 41: 3300–3305, 1981.

    PubMed  CAS  Google Scholar 

  109. McManus, M.J., and Welsch, C.W. The effect of estrogen, progesterone, thyroxine, and human placental lactogen on DNA synthesis of human breast ductal epithelium maintained in athymic nude mice. Cancer, 54: 1920– 1927, 1984.

    PubMed  CAS  Google Scholar 

  110. Hillman, E.A., Valerio, M.G., Halter, S.A., Barrett-Boone, L.A., and Trump, B.F. Long-term explant culture of normal mammary epithelium. Cancer Res., 43: 245–257, 1983.

    PubMed  CAS  Google Scholar 

  111. Sebesteny, A., Taylor-Papadimitriou, J., Ceriani, R., Mills, R., Schmitt, C., and Trevan, D. Primary human breast carcinomas transplantable in the nude mouse. J. Natl. Cancer Inst., 63: 1331–1337, 1979.

    PubMed  CAS  Google Scholar 

  112. Fogh, J., Tiso, J., Orfeo, T., Sharkey, F.E., Daniels, W.P., and Fogh, J.M. Thirty-four lines of six human tumor categories established in nude mice. J. Natl. Cancer Inst., 64: 745– 751, 1980.

    PubMed  CAS  Google Scholar 

  113. Engel, L.W., and Young, N.A. Human breast carcinoma cells in continuous culture: a review. Cancer Res., 38: 4327–4339, 1978.

    PubMed  CAS  Google Scholar 

  114. Shafie, S.M., and Grantham, F.H. Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J. Natl. Cancer Inst., 67: 51–56, 1981.

    PubMed  CAS  Google Scholar 

  115. Welsch, C.W., Swim, E.L., McManus, M.J., White, A.C., and McGrath, C.M. Estrogen induced growth of human breast cancer cells (MCF-7) in athymic nude mice is enhanced by secretions from a transplantable pituitary tumor. Cancer Lett., 14: 309–316, 1981.

    PubMed  CAS  Google Scholar 

  116. Osborne, C.K., Hobbs, K., and Clark, G.M. Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Res., 45: 584–590, 1985.

    PubMed  CAS  Google Scholar 

  117. Leung, C.K.H., and Shiu, R.P.C. Required presence of both estrogen and pituitary factors for the growth of human breast cancer cells in athymic nude mice. Cancer Res., 41: 546–551, 1981.

    PubMed  CAS  Google Scholar 

  118. Hirohashi, S., Shimosato, Y., Kameya, T., Nagai, K., and Tsunematsu, R. Hormone dependency of a serially transplantable human breast cancer (Br-10) in nude mice. Cancer Res., 37: 3184–3189, 1977.

    PubMed  CAS  Google Scholar 

  119. Rudland, P.S., Gusterson, B.A., Hughes, C.M., Osmirod, E.J., and Warburton, M.J. Two forms of tumors in nude mice generated by a neoplastic rat mammary stem cell line. Cancer Res., 42: 5196–5208, 1982.

    PubMed  CAS  Google Scholar 

  120. Bogden, A.E., Kelton, D.E., Cobb, W.R., Gulkin, T.A., and Johnson, R.K. Effect of serial passage in nude athymic mice on the growth characteristics and chemotherapy responsiveness of 13762 and R3230AC mammary tumor xenografts. Cancer Res., 38: 59–64, 1978.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Welsch, C.W. (1987). Rodent Models To ExamineIn Vivo Hormonal Regulation of Mammary Gland Tumorigenesis. In: Medina, D., Kidwell, W., Heppner, G., Anderson, E. (eds) Cellular and Molecular Biology of Mammary Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0943-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0943-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-42761-9

  • Online ISBN: 978-1-4613-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics