Skip to main content

Synthesis of Certain Specific Electroactive Polymers

  • Chapter
Nonlinear Optical and Electroactive Polymers

Abstract

Among the many synthetic challenges in electroactive polymers we consider here those which we believe are the most important: (a) to prepare polymers which have a very small semiconductor bandgap and (b) to prepare polymers which are soluble and hence fabricable. In this presentation we describe our efforts as well as those of others to achieve these goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.-Y. Jen, R. Oboodi, and R. Elsenbaumer, Synth. Met. 15:169 (1986);

    Article  Google Scholar 

  2. M. A. Sato, S. Tanaka, and K. Kaeriyama, J. Chem. Soc. Chem. Commun. 20 873 (1986).

    Article  Google Scholar 

  3. S. Hotta, S. D. D. V. Rughooputh, A. J. Heeger, and F. Wudl, Macromol. 20:212 (1987).

    Article  CAS  Google Scholar 

  4. J. L. Bredas, Synth. Met. 17:115 (1974).

    Article  Google Scholar 

  5. F. Wudl, M. Kobayashi, N. Colaneri, M. Boysel, and A. J. Heeger, Mol. Crvst. Liq. Crvst. 118:195 (1985).

    Google Scholar 

  6. S. A. Jenekhe, Nature 322:345 (1986). Note that in this case fusing both "quinoid" and "benzenoid" forms "statically" into the same backbone gives rise to a macromolecule with a degenerate ground state (analogous to polyacetylene) but cannot give a zero bandgap because the same bond alternation that exists in polyacetylene also exists in this case.

    Google Scholar 

  7. K.-Y. Jen and R. Elsenbaumer Svnth. Met. 16:379 (1986).

    Article  CAS  Google Scholar 

  8. 7a. M. P. Cava, N. M. Pollak, O. A. Mamer, and M. J. Mitchell, J. Org. Chem. 36:3932 (1971); J. Bornstein and R. P. Hardy J. Chem. Soc. Chem. Commun. 612 (1972).

    Google Scholar 

  9. S. A. Jenekhe, Nature 1986, 322. 345.

    Article  CAS  Google Scholar 

  10. S. A. Jenekhe, Macromolecules 1986,19, 2663.

    Article  CAS  Google Scholar 

  11. S. A. Jenekhe, Polym. Preprints 1986, 74.

    Google Scholar 

  12. A. O Patil and F. Wudl, Polym. Preprints 1987, in press

    Google Scholar 

  13. In references 7 and 8 it is claimed that polymer 3 is blue with a A,max of 692nm and a bandgap of 810nm (1.53 eV). The pure polymer is actually off white with A,max of 332nm and a hint of absorption in the 700- 800nm region (cf Fig. 2), indicating a small degree of unsaturation. However, both pure and impure polymers show qualitatively the same electronic spectroscopy behavior when brominated (the former less dramatically so than the latter).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Wudl, F., Ikenoue, Y., Patil, A.O. (1988). Synthesis of Certain Specific Electroactive Polymers. In: Prasad, P.N., Ulrich, D.R. (eds) Nonlinear Optical and Electroactive Polymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0953-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0953-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8262-4

  • Online ISBN: 978-1-4613-0953-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics