Skip to main content

Molecular Basis for Depressed Contractile Performance in Human Heart Failure

  • Chapter
Heart Hypertrophy and Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 169))

  • 82 Accesses

Abstract

The failing heart is characterized by a cardiac output inadequate to meet the metabolic needs of the peripheral organs and tissues. The key mechanical features of this deficiency are a raduction in the rate of pressure development, velocity of circumferential shortening, and the rate of relaxation [1–3]. The mechanical performance of heart muscle (nonfailing and failing) is directly dependent upon the characteristics of the myosin-actin cross-bridge cycle in conjunction with the degree and rate of myocardial activation and inactivation (calcium cycling) [4–9]. In order to better understand the contribution of contractile and excitation-contraction coupling changes found in heart failure as well as the molecular changes underlying them, mechanical and myothermal measurements were carried out on isolated strips of human heart muscle from nonfailing and failing hearts [mitral regurgitation (volume overload), idiopathic dilated cardiomyopathy].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Field BJ, Baxley WA, Russell RO, Hood WP, Holt JH, Dowling JT, Rackley CE. 1973. Left ventricular function and hypertrophy in cardiomyopathy with depressed ejection fraction. Circulation 47:1022–1031.

    Google Scholar 

  2. Gault JH, Ross J Jr, Braunwald E. 1968. Contractile state of the left ventricle in man: Instantaneous tension-velocity-length relations inpatients with and without disease of the left ventricular myocardium. Circ Res 22:451–463.

    PubMed  CAS  Google Scholar 

  3. Hamby RI. 1970. Primary myocardial disease: A prospective clinical and hemodynamic evaluation in 100 patients. Medicine 49:55–78.

    Article  PubMed  CAS  Google Scholar 

  4. Ford LE, Huxley AF, Simmons RM. 1977. Tension responses to sudden length change in stimulated frog muscle fibers near slack length. J Physiol 269:441–515.

    PubMed  CAS  Google Scholar 

  5. Huxley AF. 1957. Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318.

    PubMed  CAS  Google Scholar 

  6. Huxley AF, Simmons RM. 1971. Proposed mechanisms of force generation in striated muscle. Nature 233:533–538.

    Article  PubMed  CAS  Google Scholar 

  7. Kushmerick MJ, Davies RE. 1969. The chemical energetics of muscle contraction: II The chemistry, efficiency and power of maximally working sartorius muscles. Proc Roy Soc Lond B 174:315–353.

    Article  CAS  Google Scholar 

  8. Lymm RW, Taylor EW. 1971. Mechanisms of adenosine triphosphate hydrolysis actomyosin. Biochemistry 10:4617–4624.

    Article  Google Scholar 

  9. Ruegg JC. Calcium in Muscle Activation, corrected and printing. Berlin: Springer-Verlay, 1988.

    Google Scholar 

  10. Mulieri LA, Leavitt BJ, Hasenfuss G, Allen PD, Alpert NR. 1992. Contraction frequency dependence of twitch and diastolic tension in human dilated cardiopathy (tension-frequency relation in cardiomyopathy). In: Hasenfuss G, Holubarsch C, Just H, Alpert NR, eds. Cellular and Molecular Alterations in the Failing Human Heart. Darmstadt: Steinkopff Verlag, pp 199–212.

    Google Scholar 

  11. Hasenfuss G, Mulieri L, Blanchard EM, Holubarsch C, Leavitt BJ, Ittleman F, Alpert NR. 1991. Energetics of isometric force development in control and volume-overload human myocardium: Comparison with animal species. Circ Res 68:836–846.

    PubMed  CAS  Google Scholar 

  12. Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, alpert NR. 1992. Alterations of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 70:1225–1232.

    PubMed  CAS  Google Scholar 

  13. Mulieri LA, Hasenfuss G, Ittleman F, Blanchard EM, Alpert NR. 1989. Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circ Res 65:1441–1444.

    PubMed  CAS  Google Scholar 

  14. Paradise NF, Schmitter JL, Summits JM. 1981. Criteria for adequate oxygenation of isometric kitten papillary muscles. Am J Physiol 241:H348-H353.

    PubMed  CAS  Google Scholar 

  15. Mulieri LA, Hasenfuss G, Leavitt BJ, Allen PD, Alpert NR. 1992. Altered myocardial force-frequency relation in human heart failure. Circulation 85:1743–1750.

    PubMed  CAS  Google Scholar 

  16. Alpert NR, Mulieri LA. 1982. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in rabbit. Circ Res 50:491–500.

    PubMed  CAS  Google Scholar 

  17. Mulieri LA, Luhr G, Treffry J, Alpert NR. 1977. Metal-film thermopiles for use with rabbit right ventricular papillary muscles. Am J Physiol 233:046–056.

    Google Scholar 

  18. Alpert NR, Mulieri LA, Hasenfuss G. 1992. Myocardial chemo-mechanical energy transduction. In: Fozzard HA, Haber E, Jennings R, Katz A, Morgan H, eds. The Heart and Cardiovascular System, 2nd ed., New York: Raven Press, pp 111–128.

    Google Scholar 

  19. Alpert NR, Blanchard EM, Mulieri LA. 1989. Tension-independent heat in rabbit papillary muscles. J Physiol (Lond) 414:433–453.

    CAS  Google Scholar 

  20. Weber A, 1966. Energized calcium transport and relaxing factors. Curr Top Bioenerge 1:203–254.

    CAS  Google Scholar 

  21. Alpert NR, Gordon MS. 1962. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol 202:940–946.

    PubMed  CAS  Google Scholar 

  22. Alpert NR, Gale HH, Taylor N. 1967. The effect of age on contractile protein ATPase activity and the velocity of shortening. In: Tanz R, Kavaler F, Roberts J, eds. Factors Influencing Myocardial Contractility. New York: Academic Press, pp 127–133.

    Google Scholar 

  23. Alpert NR. 1973. Myosin ATPase activity and mechanical performance in normal and hypertrophied hearts. In: Roskam H, Reindell H, eds. Das chronisch Kranke Herz: Grudlagen der funktionellen Diagnostik and Therapie. Stuttgart: FK Schattauer Verlag, pp 131–136.

    Google Scholar 

  24. Perry SV, Grey TC. 1956. A study of the effects of substrate concentration and certain relaxing factors on the magnesium-activated myofibrillar adenosine triphosphatase. Biochem J 64:184–192.

    PubMed  CAS  Google Scholar 

  25. Buckley NM, Penefsky ZJ, Litwak RS. 1972. Comparative force-frequency relationships in human and other mammalian ventricular myocardium. Pflugers Arch 332:259–270.

    Article  PubMed  CAS  Google Scholar 

  26. Feldman AM, Alderman JD, Aroesty JM, Royal HD, Ferguson JJ, Owen RM, Grossman W, McKay RG. 1988. Depression of systolic and diastolic myocardial reserve during atrial passing tachycardia in patients with dilated cardiomyopathy. J Clin Invest 82:1661–1669.

    Article  PubMed  CAS  Google Scholar 

  27. Feldman AM, Gwathmey JK, Phillips P, Schoen F, Morgan JP. 1988. Reversal of the force-frequency relationship in working myocardium from patients with end-stage heart failure. J Appl Cardiol 3:273–283.

    Google Scholar 

  28. Alpert NR, Mulieri LA. 1979. Functional significance of altered myosin adenosine triphosphatase activity in enlarged hearts. Am J Cardiol 44:947–953.

    Article  CAS  Google Scholar 

  29. Pagam ED, Alousi A A, Grant AM, Older TM, Dziuban SW, Allen PD. 1988. Changes in myofibrillar content and Mg-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy or motral valve insufficiency. Circ Res 63:380–385.

    Google Scholar 

  30. Hirzel HO, Tuschmid CR, Schneider J, Krayenbuehl HP, Schaub MC. 1985. Relationship between myosin isoenzyme composition, hemodynamics and myocardial structure in various forms of human cardiac hypertrophy. Circ Res 57:729–740.

    PubMed  CAS  Google Scholar 

  31. Harris DE, Work SS, Wright RK, Alpert NR, Warshaw DM. 1994. Smooth, cardiac, and skeletal muscle myosin force and motion generation assessed by cross-bridge mechanical interactions in-vitro. J Muscle Res Cell Motil 15:11–19.

    Article  PubMed  CAS  Google Scholar 

  32. Margossian SS, White HD, Caulfield JB, Norton P, Taylor S, Slayter HS. 1992. Light chain 2 profile and activity of human ventricular myosin during dilated cardiomyopathy. Identification of a causal agent for impaired myocardial function. Circulation 855:1720–1733.

    Google Scholar 

  33. Anderson PAW, Malouf NN, Oakley AE, Pagani ED, Allen PD. 1991. Troponin T isoform expression in humans: A comparison among normal and failing adult heart, fetal heart and adult and fetal skeletal muscles. Circ Res 69:1226–1233.

    PubMed  CAS  Google Scholar 

  34. Arai M, Alpert NR, Periasamy M. 1991. Cloning and characterization of the gene encoding rabbit cardiac calsequestrin. Gene 109:275–279.

    Article  PubMed  CAS  Google Scholar 

  35. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. 1993. Alteration in sarcoplasmic reticulum gene expression in human heart failure: A possible mechanism of alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72: 463–469.

    PubMed  CAS  Google Scholar 

  36. Mercadier J-J, Lompre A-M, Duc P, Boheler KR, Fraysse J-B, Wisnewsky C, Allen PD, Komajda M, Schwartz K. 1990. Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305–309.

    Article  PubMed  CAS  Google Scholar 

  37. Nagai R, Zarain-Herzberg A, Brandl CJ, Fujii J, Tada M, MacLennan DH, Alpert NR, Periasamy M. 1989. Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 85:2966–2970.

    Article  Google Scholar 

  38. Feldman AM, Ray PE, Silan CM, Mercer JA, Minobe W, Bristow MR. 1991. Selective gene expression in failing human heart: Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation 83: 1866–1872.

    PubMed  CAS  Google Scholar 

  39. Hasenfuss G, Reinecke I, Studer R, Pieske D, Holtz J, Holubarsch C, Just H. 1993. Functional consequences of altered expression of SR-Ca2+ ATPase and Na+-Ca2+ -exchanger in failing human myocardium. Circulation 88:1–407.

    Google Scholar 

  40. Mulieri LA, Leavitt BJ, Martin BJ, Haeberle JR, Alpert NR. 1993. Myocardial force-frequency defect in mitral regurgitation heart failure is reversed by forskolin. Circulation 88:2700–2704.

    PubMed  CAS  Google Scholar 

  41. Francis GS. 1993. Survival trials in congestive heart failure. Can J Cardiol 9(Suppl F): 44F–48F.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Alpert, N.R., Mulieri, L.A., Hasenfuss, G. (1995). Molecular Basis for Depressed Contractile Performance in Human Heart Failure. In: Dhalla, N.S., Pierce, G.N., Panagia, V., Beamish, R.E. (eds) Heart Hypertrophy and Failure. Developments in Cardiovascular Medicine, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1237-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1237-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8526-7

  • Online ISBN: 978-1-4613-1237-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics