Skip to main content

Insect Neurons: Synaptic Interactions, Circuits and the Control of Behavior

  • Chapter
Nervous Systems in Invertebrates

Abstract

The theme of this chapter is how the properties and interactions of identified neurons underlie behavior in insects. I first present background material on the neuronal environment and on the intrinsic properties of neurons. The types of neuronal interaction are reviewed and include chemical, electrical, potassium ion accumulation and presynaptic inhibition. Neuronal circuitry is best known in the flight and Jumping systems of orthopterans. This field is reviewed with special reference to gating of information flow, burst generation and mutability of the circuit. The discussion speculates on the areas of research likely to be fruitful in the near future, and on whether much of the complexity in the nervous system has adaptive function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams ME, O’Shea M (1983) Peptide co-transmitter at a neuromuscular Junction. Science 221: 286–289.

    Article  PubMed  CAS  Google Scholar 

  • Altman JS (1987) How the nervous system decides what the insect will do next. (This volume).

    Google Scholar 

  • Ammermüller J (1986) Passive cable properties of locust ocellar L-neurons. J Comp Physiol 158: 339–344.

    Article  Google Scholar 

  • Bacon JP (1987) The insect nervous system: in vivo and in vitro development. (This volume).

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt- filled neurones in whole-mount preparations. Brain Res 138: 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Bacon JP Murphey RK (1984) Receptive fields of cricket giant inter- neurones are related to their structure. J Physiol 352: 601–623.

    PubMed  CAS  Google Scholar 

  • Bacon JP, Strausfeld NJ (1986) The dipteran “Giant fibre” pathway: neurons and signals. J Comp Physiol 158: 529–548.

    Article  Google Scholar 

  • Bacon JP, Tyrer NM (1978) The tritocerebral commissure giant (T.C.G.): a bimodal interneurone in the locust, Schistocerca gregaria. J Comp Physiol 126: 317–325.

    Article  Google Scholar 

  • Bentley DR (1969a) Intracellular activity in cricket neurons during the generation of behaviour patterns. J Insect Physiol 15: 677–699.

    Article  PubMed  CAS  Google Scholar 

  • Bentley DR (1969b) Intracellular activity in cricket neurons during generation of song patterns. Z vergl Physiol 62: 267–283.

    Article  Google Scholar 

  • Berry MS, Pentreath VW (1976) Criteria for distinguishing between monosynaptic and polysynaptic transmission. Brian Res 105: 1–20.

    Article  CAS  Google Scholar 

  • Blagburn JM, Beadle DJ, Sattelle DB (1984) Synapses between an identified giant inteneurone and a filiform hair sensory neurone in the terminal ganglion of first instar cockroaches (Periplaneta americana L.) J Exp Biol 113: 477–481.

    Google Scholar 

  • Boeckh J, Ernst KD, Sass H, Waldow U (1984) Anatomical and physiological characteristics of individual neurones in the central antennal pathway of insects. J Insect Physiol 30: 15–26.

    Article  Google Scholar 

  • Boistel J, Coraboeuf E (1954) Potential de membrane et potentials d’action de nerf d’insecte recuellis à l’aide de microélectrodes intracellulaires. CR Acad Sei, Paris 238: 2116–2118.

    CAS  Google Scholar 

  • Boyan GS (1980) Auditory neurones in the brain of the cricket Gryllus bimaculatus (De Geer). J Comp Physiol 140: 81–93.

    Article  Google Scholar 

  • Boyan GS (1984) What is an “auditory” neurone. Naturwiss 71: 482.

    Article  Google Scholar 

  • Boyan GS, Altman JS (1985) The suboesophageal ganglion: a “missing link” in the auditory pathway of the locust. J Comp Physiol 156: 413–428.

    Article  Google Scholar 

  • Boyan GS, Fullard JH (1986) Interneurones responding to sound in the tobacco budworm moth Heliotis virescens (Noctuidae): morphological and physiological characteristics. J Comp Physiol 158: 391–404.

    Article  Google Scholar 

  • Bräunig P (1985) Mechanoreceptive neurons in an insect brain. J Comp Neurol 236: 234–240.

    Article  PubMed  Google Scholar 

  • Bräunig P, Hustert R (1980) Proprioceptors with central cell bodies in insects. Nature 283: 768–770.

    Article  Google Scholar 

  • Breer H, Heilgenberg H (1985) Neurochemistry of GABAergic activities in the central nervous system of Locusta miqratoria. J Comp Physiol 157: 343–354.

    Article  CAS  Google Scholar 

  • Breer H, Kleene R, Hinz G (1985) Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects. J Neurosci 5: 3386–3392.

    PubMed  CAS  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates. WH Freeman and Co., Sans Francisco, London, 2 Vol.

    Google Scholar 

  • Burrows M (1975) Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust. J Exp Biol 62: 189–219.

    PubMed  CAS  Google Scholar 

  • Burrows M (1977) Flight mechanisms of the locust. In: Hoyle G (ed) Identified neurons and behavior of Arthropods. Plenum Press, New York, London, pp 339–356.

    Google Scholar 

  • Burrows M (1978) Local interneurones and integration in locust ganglia. Verh Dtsch Zool Ges 1978: 68–79.

    Google Scholar 

  • Burrows M (1979) Sources of variation in the output of locust spiracular motoneurones receiving common synaptic driving. J Exp Biol 74: 175–186.

    Google Scholar 

  • Burrows M (1980) The control of sets of motoneurones by local inter- neurones in the locust. J Physiol 298: 213–233.

    PubMed  CAS  Google Scholar 

  • Burrows M (1981) Local interneurones in insects. In: Roberts A, Bush BMH (eds) Neurones without impulses. Cambridge University Press, Cambridge UK pp 199–221.

    Google Scholar 

  • Burrows M (1982) Interneurones co-ordinating the ventilatory movements of the thoracic spiracles in the locust. J Exp Biol 97: 385–400.

    Google Scholar 

  • Burrows M (1985) Nonspiking and spiking local interneurons in the locust. In: Seiverston AI (ed) Model neural networks and behavior Plenum Press, New York, London, pp 109–125.

    Google Scholar 

  • Burrows M, Siegler MVS (1976) Transmission without spikes between locust interneurones and motoneurones. Nature 262: 222–224.

    Article  PubMed  CAS  Google Scholar 

  • Burrows M, Siegler MVS (1978) Graded synaptic transmission between local interneurones and motor neurones in the metathoracic ganglion of the locust. J Physiol 285: 231–255.

    PubMed  CAS  Google Scholar 

  • Burrows M, Siegler MVS (1984) The morphological diversity and receptive fields of spiking local interneurones in the locust metathoracic ganglion. J

    Google Scholar 

  • Comp Neurol 224: 483–508.

    Google Scholar 

  • Burrows M, Boeckh J, Esslen J (1982) Physiological and morphological characteristics of interneurones in the deutocerebrum of male cockroaches which respond to female pheromone. J Comp Physiol 145: 447–457.

    Article  Google Scholar 

  • Callec J-J (1974) Synaptic transmission in the central nervous system of insects. In: Treherne JE (ed) Insect neurobiology. Elsevier, Amsterdam. pp 119–178.

    Google Scholar 

  • Callec J-J (1985) Synaptic transmission in the central nervous system. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, New York. Vol. 5, pp 139–179.

    Google Scholar 

  • Carr CE, Fourtner CR (1980) Pharmacological analysis of a monosynaptic relex in the cokroach, Periplaneta americana. J Exp Biol 86: 259–273.

    CAS  Google Scholar 

  • Carrow GM, Calabrese RL, Williams CM (1984) Architecture and physiology of insect cerebral neurosecretory cells. J Neurosci 4: 1034–1044.

    PubMed  CAS  Google Scholar 

  • Casaday GB, Hoy RR (1977) Auditory interneurons in the cricket Teleogryllus oceanicus-physiological and anatomical properties. J Comp Physiol 121: 1–13.

    Article  Google Scholar 

  • Claassen DE, Kammer AE (1986) Effects of octopamine, dopamine, and serotonin on production of flight motor output by thoracic ganglia of Manduca sexta. J Neurobiol 17: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Cokl A, Otto C, Kalmring K (1985) The processing of directional vibratory signals in the ventral nerve cord of Locusta miqratoria. J Comp Physiol 156: 45–52.

    Article  Google Scholar 

  • Coles JA, Tsacopoulos M (1981) Ionic and possible metabolic interactions between sensory neurones and glial cells in the retina of the honeybee drone. J Exp Biol 95: 75–92.

    PubMed  CAS  Google Scholar 

  • Collin SP (1985) The central morphology of the giant interneurons and their spatial relationships with the thoracic motorneurons in the cockroach, Periplaneta americana (Insecta). J Neurobiol 16: 249–267.

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver PF, Truman JW (1986) Identification of the cerebral neurosecretory cells that contain eclosion hormone in the moth Manduca sexta. J Neurosci 6: 1738–1747.

    PubMed  CAS  Google Scholar 

  • Crossman AR, Kerkut GA, Pitman RM, Walker RJ (1971) Electrically excitable nerve cell bodies in the central ganglia of two insect species, Periplaneta americana and Schistocerca gregaria. Investigation of cell geometry and morphology by intracellular dye inJection. Comp Biochem Physiol 40: 579–596.

    Article  Google Scholar 

  • Cull-Candy SG (1982) Properties of postsynaptic channels activated by glutamate and GABA in locust muscle fibres. In: Neuropharmacology of Insects. Ciba Foundation Symposium 88. Pitman Books, London. pp 70–87.

    Google Scholar 

  • Daley DL, Vardi N, Appignami B, Camhi JM (1981) Morphology of giant interneurons and cercal nerve proJections of the american cockroach. J Comp Neurol 196: 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210: 492–498.

    Article  PubMed  CAS  Google Scholar 

  • Delcomyn F (1983) Activity and structure of movement-signalling (corollary discharge) interneurons in a cockroach. J Comp Physiol 150: 185–193.

    Article  Google Scholar 

  • DeVoe RD, Kaiser W, Ohm J, Stone LS (1982) Horizontal movement detectors of honeybees: directionally-selective visual neurons in the lobüla and brain. J Comp Physiol 147: 155–170.

    Article  Google Scholar 

  • Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolutionary perspective. Science 233: 849–853.

    Article  PubMed  CAS  Google Scholar 

  • Eckert H (1982) The vertical-horizontal neurone (VH) in the lobula plate of the blowfly, Phaenicia. J Comp Physiol 149: 195–205.

    Article  Google Scholar 

  • Erber J (1983) The search for neural correlates of learning in the honeybee. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer Verlag, Berlin, Heidelberg, pp 216–227.

    Chapter  Google Scholar 

  • Ernst KD, Boeckh J (1983) A neuroanatomical study on the organization of the central antennal pathways in insects. III. Neuroanatomical characterization of physiologically defined response types of deutocerebral neurons in Periplaneta americana. Cell Tissue Res 229: 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Evans PD (1980) Biogenic amines in the insect nervous system. Adv Insect Physiol 15: 317–473.

    Article  CAS  Google Scholar 

  • Evans PD (1984) The role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. J Physiol 348: 325–340.

    PubMed  CAS  Google Scholar 

  • Evans PD, O’Shea M (1977) An octopaminergic neurone modulates neuromuscular transmission on the locust. Nature 270: 257–259.

    Article  PubMed  CAS  Google Scholar 

  • Friesen WO, Stent GS (1977) Generation of a locomotory rhythm by a neural network with recurrent cyclic inhibition. Biol Cybernet 28: 27–40.

    Article  CAS  Google Scholar 

  • Gerschenfeld HM (1973) Chemical transmission in invertebrate central nervous systems and neuromuscular Junctions. Physiol Rev 53: 1–19.

    PubMed  CAS  Google Scholar 

  • Getting PA (1981) Mechanisms of pattern generation underlying swimming in Tritonia. I. Neuronal network formed by monosynaptic connections. J Neurophysiol 46: 65–79.

    PubMed  CAS  Google Scholar 

  • Getting PA (1983) Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. J Neurophysiol 49: 1017–1035.

    PubMed  CAS  Google Scholar 

  • Getting PA (1986) Comparative analysis of invertebrate central pattern generators. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movements. John Wiley and Sons, Inc., New York, in press.

    Google Scholar 

  • Goodman CS (1976) Anatomy of the ocellar interneurones of acridid grasshoppers. I. The large interneurones. Cell Tissue Res 175: 166–183.

    Google Scholar 

  • Goodman CS, Heitler WJ (1979) Electrical properties of insect neurones with spiking and non-spiking somata: normal, axotomized, and colchicine-treated neurones. J Exp Biol 83: 95–121.

    PubMed  CAS  Google Scholar 

  • Goodman CS, Spitzer NC (1979) Embryonic development of identified neurones: differentiation from neruoblast to neurone. Nature 280: 208–213.

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS, Williams JLD (1976) Anatomy of the ocellar interneurones of acridid grasshoppers. II. The small interneurones. Cell Tissue Res 175: 203–225.

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS, Pearson KG, Heitler WJ (1979) Variability of identified neurons in grasshoppers. Comp Biochem Physiol 64: 455–462.

    Article  Google Scholar 

  • Goodman CS, Pearson KG, Spitzer NC (1980) Electrical excitability: a spectrum of properties in the progeny of a single embryonic neuroblast. Proc Natl Acad Sci USA 77: 1676–1680.

    Article  PubMed  CAS  Google Scholar 

  • Gwilliam GF, Burrows M (1980) Electrical characteristics of the membrane of an identified insect motor neurone. J Exp Biol 86: 49–61.

    Google Scholar 

  • Gynther IC, Pearson KG (1986) Intracellular recording from interneurones and motoneurones during bilateral kicks in the locust: implications for mechanisms controlling the Jump. J Exp Biol 122: 323–343.

    Google Scholar 

  • Hagiwara S, Watanabe A (1956) Discharges in motoneurons of cicadas. J Cell Comp Physiol 47: 415–428.

    Article  CAS  Google Scholar 

  • Hanke W, Breer H (1986) Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature 321: 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Harris CL, Garrison W (1976) Electronic coupling between cercal afferents and giant interneurons in the American cockroach. J Insect Physiol 22: 31–40.

    Article  Google Scholar 

  • Harrow ID, Hue B, Pelhate M, Sattelle DB (1980) Cockroach giant interneurones stained by cobalt-backfilling of dissected axons. J Exp Biol 84: 341–343.

    PubMed  CAS  Google Scholar 

  • Harrow ID, David JA, Sattelle DB (1982) Acetylcholine receptors of identified insect neurons. In: Neuropharmacology of Insects. Ciba Foundation Symposium #88. Pitman, London, pp 12–31.

    Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. I. Horizontal cells: structure and signals. Biol Cybernet 45: 143–156.

    Article  Google Scholar 

  • Hedwig B (1986a) On the role in stridulation of plurisegmental interneurons of the acridid grasshopper Omocestus viridulus L. I. Anatomy and physiology of descending cephalothoracic interneurons. J Comp Physiol 158: 413–427.

    Article  Google Scholar 

  • Hedwig B (1986b) On the role in stridulation of plurisegmental interneurons of the acridid grasshopper Omocestus viridulus L. II. Anatomy and physiology of ascending and T-shaped interneurons. J Comp Physiol 158: 429–444.

    Article  Google Scholar 

  • Heitler WJ (1983) Suppression of a locust visual interneurone (DCMD) during defensive kicking. J Exp Biol 104: 203–215.

    Google Scholar 

  • Heitler WJ, Burrows M (1977a) The locust Jump. I. The motor programme. J Exp Biol 66: 203–219.

    PubMed  CAS  Google Scholar 

  • Heitler WJ, Burrows M (1977b) The locust Jump. II. Neural circuits of the motor programme. J Exp Biol 66: 221–241.

    PubMed  CAS  Google Scholar 

  • Heitler WJ, Goodman CS (1978) Multiple sites of spike initiation in a bifurcating locust neurone. J Exp Biol 76: 63–84.

    Google Scholar 

  • Hengstenberg R, Hausen K, Hengstenberg B (1982) The number and structure of giant vertical cells (VS) in the Lobula plate of the blowfly Calliphora erythrocephala. J Gomp Physiol 149: 163–177.

    Article  Google Scholar 

  • Hertel H (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J Comp Physiol 137: 215–231.

    Article  Google Scholar 

  • Hester R (1986) From insects to robotics. Byte (letters column) 11: 26.

    Google Scholar 

  • Hildebrand JG (1982) Chemical signalling in the insect nervous system. In: Neuropharmacology of Insects. Ciba Foundation Symposium #88. Pitman, London, pp 5–11.

    Google Scholar 

  • Hisada M, Takahata M, Nagayama T (1984) Local non-spiking interneurons in the arthropod motor control systems: characterization and their functional significance. Zool Sci 1: 681–700.

    Google Scholar 

  • Homberg U (1985) Interneurones of the central complex in the bee (Apis mellifera, L.). J Insect Physiol 31: 251–264.

    Article  Google Scholar 

  • Hörner M, Gras H (1985) Physiological properties of some descending neurons in the cricket brain. Naturwiss 72: 603.

    Article  Google Scholar 

  • Horridge GA, MarcelJa L, Gahnke R, Matic T (1983) Single electrode studies on the retina of the butterfly Papilio. J Comp Physiol 150: 271–294.

    Article  Google Scholar 

  • Hoyle G (1953) Potassium ions and insect nerve muscle. J Exp Biol 30: 121–135.

    CAS  Google Scholar 

  • Hoyle G (1970) Cellular mechanisms underlying behavior-neuroethology. Adv Insect Physiol 7: 349–444.

    Article  Google Scholar 

  • Hoyle G (ed) (1977) Identified neurons and behavior of Arthropods. Plenum Press, New York, London.

    Google Scholar 

  • Hoyle G (1983) On the way to neuroethology: the identified neuron approach. In: Huber F, Mark H (eds) Neuroethology and behavioral physiology. Springer Verlag, Berlin, Heidelberg, pp 9–25.

    Chapter  Google Scholar 

  • Hoyle G (1986) Glial cells of an insect ganglion. J Comp Neurol 246: 85–103.

    Article  PubMed  CAS  Google Scholar 

  • Hoyle G, Burrows M (1973) Neural mechanisms underlying behavior in the locust Schistocerca gregaria.I. Physiology of identified motorneurons in the metathoracic ganglion. J Neurobiol 4: 3–41.

    Article  PubMed  CAS  Google Scholar 

  • Hoyle G, Dagan D, Moberly B, Colquhoun W (1974) Dorsal unpaired median insect neurones make neurosecretory endings on skeletal muscle. J Exp Zool 187: 159–165.

    Article  Google Scholar 

  • Hoyle G, Williams M, Phillips C (1986) Functional morphology of insect neuronal cell-surface/glial contacts: the trophospongium. J Comp Neurol 246: 113–128.

    Article  PubMed  CAS  Google Scholar 

  • Hue B, Callec JJ (1983) Presynaptic inhibition in the cercal-afferent giant-interneurone synapses of the cockroach Periplaneta americana. J Insect Physiol 29: 741–748.

    Article  CAS  Google Scholar 

  • Hustert R (1985) Multisegmental integration and divergence of afferent information from single tactile hairs in a cricket. J Exp Biol 118: 209–227.

    Google Scholar 

  • Jan YN, Jan LY (1985) Genetic and molecular studies of a potassium channel gene in Drosophila. In: Selverston AI (ed) Model neural networks and behavior. Plenum Press, New York, London, pp 537–546.

    Google Scholar 

  • Järvilehto M, Zettler F (1971) Localised intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina. Z Vergl Physiol 75: 422–440.

    Article  Google Scholar 

  • Jego P, Callec JJ, Pichon Y, Boistel J (1970) Etude électrophysiologique de corps cellulaires excitables de Vlème ganglion abdominal de Periplaneta americana: aspects électriques et ioniques. CR Hedb Seanc Acad Sci, Paris 164: 893–904.

    CAS  Google Scholar 

  • Kerkut GA, Gilbert LI (eds) (1985) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford, New York. 13 Volumes.

    Google Scholar 

  • Kerkut GA, Pitman RM, Walker RJ (1969) Sensitivity of the insect central nervous system to iontophoretically applied acetylcholine and GABA. Nature 222: 1075–1076.

    Article  PubMed  CAS  Google Scholar 

  • Kien J, Altman JS (1984) Descending interneurones from the brain and sub-oesophagel ganglia and their role in the control of locust behavior. J Insect Physiol 30: 59–72.

    Article  Google Scholar 

  • Kien J, Williams M (1983) Morphology of neurons in locust brain and suboesophageal ganglion involved in initiation and maintenance of walking. Proc R Soc Lond B 219: 175–192.

    Article  Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164: 788–798.

    Article  PubMed  CAS  Google Scholar 

  • Koenig JH, Ikeda K (1983) Reciprocal excitation between identified flight motor neurons in Drosophila and its effect on pattern generation. J Comp Physiol 150: 305–317.

    Article  Google Scholar 

  • Komatsu A (1984) Ascending interneurons that convey a respiratory signal in the central nervous system of the dragonfly larva. J Comp Physiol 154: 331–340.

    Article  Google Scholar 

  • Kristan WB (1980) Generation of rhythmic motor patterns. In: Pinsker HM, Willis WD (eds) Information processing in the nervous system. Raven Press, New York, pp 241–261.

    Google Scholar 

  • Lane NJ (1981a)Tight Junctions in arthropods. Int Rev Cytol 73: 243–318.

    Article  Google Scholar 

  • Lane NJ (1981b)Invertebrate neuroglia-Junctional structure and development. J Exp Biol 95: 7–33.

    Google Scholar 

  • Laughlin SB (1973) Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second order neurons. J Comp Physiol 84: 335–355.

    Article  Google Scholar 

  • Leech CA, Treherne JE (1984) Growth and ion-specificity of excitability in regenerating cockroach giant interneurones. J Exp Biol 110: 311–318.

    PubMed  CAS  Google Scholar 

  • Levine RB (1984) Changes in neuronal circuits during insect metamorphosis. J Exp Biol 112: 27–44.

    PubMed  CAS  Google Scholar 

  • Levine RB (1986) Reorganization of the insect nervous system during metamorphosis. Trends Neurosci 9: 315–319.

    Article  Google Scholar 

  • Levine RB, Murphey RK (1980) Pre- and postsynaptic inhibition of identified giant interneurons in the cricket (Acheta domesticus). J Comp Physiol 135: 269–282.

    Article  Google Scholar 

  • Levine RB, Truman JW (1982) Metamorphosis of the insect nervous system: changes in morphology and synaptic interactions of identified neurons. Nature 299: 250–252.

    Article  PubMed  CAS  Google Scholar 

  • Levins R, Lewontin R (1985) The dialectical biologist. Chapter 2. Adaptation. Harvard University Press, Cambridge Mass. pp 65–84.

    Google Scholar 

  • Marquart V (1985) Local interneurons mediating excitation and inhibition onto ascending neurons in the auditory pathway of grasshoppers. Naturwiss 72: 42.

    Article  Google Scholar 

  • Matsumoto SG, Hildebrand JG (1981) Olfactory mechanisms in the moth Manduca sexta-response characteristics and morphology of central neurons in the antennal lobes. Proc R Soc Lond B 213: 249–277.

    Article  CAS  Google Scholar 

  • Meiri H, Spira ME, Parnas I (1981) Membrane conductance and action potential of a regenerating axonal tip. Science 211: 709–712.

    Article  PubMed  CAS  Google Scholar 

  • Mendenhall B, Murphey RK (1974) The morphology of cricket giant interneurons. J Neurobiol 5: 565–580.

    Article  CAS  Google Scholar 

  • Meyer MR, Edwards JS (1980). Muscarinic cholinergic binding sites in an orthopteran nervous system. J Neurobiol 11: 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Milde JJ (1984) Ocellar interneurons in the honeybee. Structure and signals of L-neurons. J Comp Physiol 154: 683–693.

    Article  Google Scholar 

  • Miller JP, Jacobs GA (1984) Relationships between neuronal structure and function. J Exp Biol 112: 129–145.

    CAS  Google Scholar 

  • Miller JP, Selverston AI (1982a) Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identifed neurons II. Oscillatory properties of pyloric neurons. J Neurophysiol 48: 1378–1391.

    PubMed  CAS  Google Scholar 

  • Miller JP, Selverston AI (1982b) Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identifed neurons. IV. Network properties of pyloric system. J Neurophysiol 48: 1416–1432.

    PubMed  CAS  Google Scholar 

  • Miyazaki S (1980) The ionic mechanism of action potentials in neurosecretory cells and non-neurosecretory cells of the silkworm. J Comp Physiol 140: 43–52.

    Article  CAS  Google Scholar 

  • Mizunami M, Yamashita S, Tateda H (1982) Intracellular stainings of the large ocellar second order neurons in the cockroach. J Comp Physiol 149: 215–219.

    Article  Google Scholar 

  • Möhl B (1985) Sensory aspects of flight pattern generation in the locust. In: Gewecke M, Wendler G (eds) locomotion. Verlag Paul Parey, Berlin, Heidelberg, pp 139–148.

    Google Scholar 

  • Murphey RK (1985) A second cricket cercal sensory system: bristle hairs and the interneurons they activate. J Comp Physiol 156: 357–367.

    Article  Google Scholar 

  • Murphey RK, Palka J, Hustert R (1977) The cercus-to-giant interneuron system of crickets. II. Response characteristics of the giant interneurons. J Comp Physiol 119: 285–300.

    Article  Google Scholar 

  • Narahashi T (1963) The properties of insect axons. Adv Insect Physiol 1: 175–256.

    Article  CAS  Google Scholar 

  • Nässel DR (1987a) Aspects of the functional and chemical anatomy of the insect brain. (This volume)

    Google Scholar 

  • Nässel DR (1987b) Neuroactive substances in the insect CNS. (This volume)

    Google Scholar 

  • Nistri A, Constanti A (1979) Pharmacological characterization of different types of GABA and glutamate receptors in vertebrate and invertebrates. Prog Neurobiol 13: 117–235.

    Article  PubMed  CAS  Google Scholar 

  • Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226: 992–994.

    Article  PubMed  CAS  Google Scholar 

  • Olberg RM (1986) Identified target-selective visual interneurons descending from the dragonfly brain. J Comp Physiol 159: 827–840.

    Article  Google Scholar 

  • Orchard I (1976) Calcium dependent action potentials in a peripheral neurosecretory cell of a stick insect. J Comp Physiol 112: 95–102.

    Article  CAS  Google Scholar 

  • Orchard I, Osborne MP (1977) The effects of cations upon the action potentials recorded from neurohaemal tissue of the stick insect. J Comp Physiol 118: 1–12.

    Article  CAS  Google Scholar 

  • O’Shea M (1975) Two sites of axonal spike initiation in a bimodal interneuron. Brain Res 96: 93–98.

    Article  PubMed  Google Scholar 

  • O’Shea M (1982) Peptide neurobiology: an identified neurone approach with special reference to proctolin. Trends Neurosci 5: 69–73.

    Article  Google Scholar 

  • O’Shea M, Bishop CA (1982) Neuropeptide proctolin associated with an identified skeletal motoneuron. J Neurosci 2: 1242–1251.

    PubMed  Google Scholar 

  • O’Shea M Evans PD (1979) Potentiation of neuromuscular transmission by an octopaminergic neurone in the locust. J Exp Biol 79: 169–190.

    Google Scholar 

  • O’Shea M, Rowell CHF (1975) A spike transmitting electrical synapse between visual interneurones in the locust movement detector system. J Comp Physiol 97: 143–153.

    Article  Google Scholar 

  • OShea M, Williams JLD (1974) Anatomy and output connection of the lobular giant movement detector (LGMD) of the locust. J Comp Physiol 41: 257–266.

    Article  Google Scholar 

  • O’Shea M, Rowell CHF, Williams JLD (1974) The anatomy of a locust visual interneuron: the descending contralateral movement detector. J Exp Bio 60: 1–12.

    Google Scholar 

  • Patterson JA, Chappell RL (1980) Intracellular responses of procion filled cells and whole nerve cobalt impregnations in the dragonfly ocellus. J Comp Physiol 139: 25–39.

    Article  Google Scholar 

  • Pearson KG (1976) Nerve cells without action potentials. In: Fentress JC (ed) Simpler networks and behavior. Sinauer Associates, Inc., Massachussetts. pp 99–110.

    Google Scholar 

  • Pearson KG (1977) Interneurons in the ventral nerve cord of insects. In: Hoyle G (ed) Identified neurons and behavior of Arthropods. Plenum Press, New York, London, pp 329–337.

    Google Scholar 

  • Pearson KG (1979) Local neurons and local interactions in the nervous systems of invertebrates. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Massachusetts. pp 145–157.

    Google Scholar 

  • Pearson KG (1980) Burst generation in co-ordinating interneurons of the ventilatory system of the locust. J Comp Physiol 137: 305–313.

    Article  Google Scholar 

  • Pearson KG (1981) Function of sensory input in insect motor systems. Can J Physiol Pharmacol 59: 660–666.

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG (1983) Neural circuits for Jumping in the locust. J Physiol (Paris) 78: 765–771.

    CAS  Google Scholar 

  • Pearson KG (1985a) Neuronal circuits for patterning motor activity in invertebrates. In: Cohen MJ, Strumwasser F (eds) Comparative neurobiology: Modes of communication in the nervous system. John Wiley and Sons Inc., New York, pp 225–244.

    Google Scholar 

  • Pearson KG (1985b) Are there central pattern generators for walking and flight in insects? In: Barnes WJP, Gladden MH (eds) Feedback and motor control in invertebrates and vertebrates. Croom Helm, Ltd., London, pp 307–315.

    Google Scholar 

  • Pearson KG, Fourtner CR (1975) Non-spiking interneurons in the walking system of the cockroach. J Neurophysiol 38: 33–52.

    PubMed  CAS  Google Scholar 

  • Pearson KG, Franklin R (1984) Characteristics of leg movements and patterns of coordination in insects walking on rough terrain. Int J Robotics Res J: 101–112.

    Google Scholar 

  • Pearson KG, Goodman CS (1979) Correlation of variability in structure with variability in synaptic connections of an identified interneuron in locusts. J Comp Neurol 184: 141–166.

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG, Goodman CS (1981) Presynaptic inhibition of transmission from identified interneurons in locust central nervous system. J Neurphysiol 45: 501–515.

    CAS  Google Scholar 

  • Pearson KG, O’Shea M (1984) Escape behavior of the locust. The Jump and its initiation by visual stimuli. In: Eaton RC (ed) Neural mechanisms of startle behavior. Plenum Press, New York, London. pp 163–178.

    Google Scholar 

  • Pearson KG, Robertson RM (1981) Interneurons coactivating hindleg flexor and extensor motoneurons in the locust. J Neurophysiol 144: 391–400.

    Google Scholar 

  • Pearson KG, Robertson RM (1987) Structure predicts synaptic action of two classes of interneurons in locust thoracic ganglia. Cell Tissue Res (in press).

    Google Scholar 

  • Pearson KG, Wong RKS, Fourtner CR (1976) Connexions between hair plate afferents and motoneurones in the cockroach leg. J Exp Biol 64: 251–266.

    PubMed  CAS  Google Scholar 

  • Pearson KG, Heitler WJ, Steeves JD (1980) Triggering of locust Jump by multimodal inhibitory interneurons. J Neurophysiol 43: 257–278.

    PubMed  CAS  Google Scholar 

  • Pearson KG, Boyan GS, Bastiani M, Goodman CS (1985a) Heterogeneous properties of segmentally homologous interneurons in the ventral nerve cord of locusts. J Comp Neurol 233: 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG, Reye DN, Parsons DW, Bicker G (1985b) Flight-initiating interneurons in the locust. J Neurophysiol 53: 910–925.

    PubMed  CAS  Google Scholar 

  • Pentreath VW (1982) Potassium signalling of metabolic interactions between neurons and glial cells. Trends Neurosci 5: 339–345.

    Article  CAS  Google Scholar 

  • Pentreath VW (1987) Functions of invertebrate glia. (This volume)

    Google Scholar 

  • Perkel DH, Mulloney B (1974) Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science 185: 181–183.

    Article  PubMed  CAS  Google Scholar 

  • Peters BH, Altman JS, Tyrer NM (1985) Synaptic connections between the hindwing stretch receptor and flight motor neurones in the locust revealed by double cobalt labelling for electron microscopy. J Comp Neurol 233: 269–284.

    Article  PubMed  CAS  Google Scholar 

  • Pflüger H-J (1984) The large fourth abdominal intersegmental interneuron: a new type of wind-sensitive ventral cord interneuron in locusts. J Comp Neurol 222: 343–357.

    Article  PubMed  Google Scholar 

  • Pichon Y (1974) Axonal conduction in insects. In: Treherne JE (ed) Insect neurobiology. Elsevier, Amsterdam, pp 73–117.

    Google Scholar 

  • Pichon Y, Ashcroft FM (1985) Nerve and muscle: electrical activity. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, New York. Vol 5, pp 85–113.

    Google Scholar 

  • Pichon Y, Boistel J (1963) Modifications of the ionic content of the haemolymph and of the activity of Periplaneta americana in relation to diet. J Insect Physiol 9: 887–891.

    Article  CAS  Google Scholar 

  • Pichon Y, Boistel J (1967) Microelectrode study of the resting and action potentials of the cockroach giant axon with special reference to the role played by the nerve sheath. J Exp Biol 47: 357–373.

    PubMed  CAS  Google Scholar 

  • Pichon Y, Treherne JE (1970) Extraneuronal potentials and potassium depolarization in cockroach giant axons. J Exp Biol 53: 485–493.

    PubMed  CAS  Google Scholar 

  • Pichon Y, Moreton RB, Treherne JE (1971) A quantitative study of the ionic basis of extraneuronal potential changes in the central nervous system of the cockroach (Periplaneta americana, L.). J Exp Biol 54: 757–777.

    PubMed  CAS  Google Scholar 

  • Pitman RM (1971) Transmitter substances in insects: a review. Comp Gen Pharmacol 2: 347–371.

    Article  CAS  Google Scholar 

  • Pitman RM (1975a) The ionic dependence of action potentials induced by colchicine in an insect motorneurone cell body. J Physiol 247: 511–520.

    PubMed  CAS  Google Scholar 

  • Pitman RM (1975b) Calcium-dependent action potentials in the cell body of an insect motoneurone. J Physiol 251: 62–63P.

    Google Scholar 

  • Pitman RM, Kerkut GA (1970) Comparison of the actions of iontophoretical- ly applied acetylcholine and gamma-aminobutyric acid in cockroach central neurones. Comp Gen Pharmacol 1: 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Pitman RM Tweedle CD, Cohen MJ (1972a) Branching of central neurons: intracellular cobalt inJection for light and electron microscopy. Science 176: 412–414.

    Article  PubMed  CAS  Google Scholar 

  • Pitman RM, Tweedle CD, Cohen MJ (1972b) Electrical properties of insect central neurons: augmentation by nerve section or colchicine. Science 178: 507–509.

    Article  PubMed  CAS  Google Scholar 

  • Plotnikova SI (1969) Effector neurones with several axons in the ventral nerve cord of the Asian grasshopper, Locusta miqratoria. J Evol Biochem Physiol 5: 276–278.

    Google Scholar 

  • Popov AV, Markovich AM (1982) Auditory interneurons in the prothoracic ganglion of the cricket, Gryllus bimaculatus. II. A high frequency ascending neurone (HF1AN). J Comp Physiol 146: 351–359.

    Article  Google Scholar 

  • Popov AV, Markovich AM, AndJan AS (1978) Auditory interneurons in the prothoracic ganglion of the cricket Gryllus bimaculatus. I. The large segmental auditory neuron (LSAN). J Comp Physiol 126: 183–192.

    Article  Google Scholar 

  • Rail W (1981) Functional aspects of neuronal geometry. In: Roberts A, Bush BMH (eds) Neurones without impulses. Cambridge University Press, Cambridge, UK pp 223–254.

    Google Scholar 

  • Raper JA, Bastiani M, Goodman CS (1983). Pathfinding by neuronal growth cones in grasshopper embryos. I. Divergent choices made by the growth cones of sibling neurons. J Neurosci 3: 20–30.

    PubMed  CAS  Google Scholar 

  • Rehbein H (1976) Auditory neurons in the ventral cord of the locust: morphological and functional properties. J Comp Physiol 110: 233–250.

    Article  Google Scholar 

  • Reichert H, Rowell CHF (1985) Integration of non-phaselocked exteroceptive information in the control of rhythmic flight in the locust. J Neurophysiol 53: 1201–1218.

    PubMed  CAS  Google Scholar 

  • Reichert H, Rowell CHF (1986) Neuronal circuits controlling flight in the locust: how sensory information is processed for motor control. Trends Neurosci 9: 281–283.

    Article  Google Scholar 

  • Reichert H, Rowell CHF, Griss C (1985) Course correction translates feature detection into behavioural action in locusts. Nature 315: 142–144.

    Article  Google Scholar 

  • Rind FC (1983) A directionally sensitive motion detecting neurone in the brain of a moth. J Exp Biol 102: 253–271.

    Google Scholar 

  • Rind FC (1984) A chemical synapse between two motion detecting neurones in the locust brain. J Exp Biol 110: 143–167.

    PubMed  CAS  Google Scholar 

  • Ritzmann RE, Tobias ML, Fourtner CR (1980) Flight activity initiated via giant interneurons of the cockroach: evidence for bifunctional trigger interneurons. Science 210: 443–445.

    Article  PubMed  CAS  Google Scholar 

  • Robertson RM (1985a) Central neuronal interactions in the flight system of the locust. Gewecke M, Wendler G (eds) Insect locomotion. Paul Parey, Berlin, Hamburg, pp 183–194.

    Google Scholar 

  • Robertson RM (1985b) Interneurons in the flight system of the cricket, Teleogryllus oceanicus. Soc Neurosci Abstr 11: 512.

    Google Scholar 

  • Robertson RM (1986) Neuronal circuits controlling flight in the locust: central generation of the rhythm. Trends Neurosci 9: 278–280.

    Article  Google Scholar 

  • Robertson RM, Moulins M (1981) Oscillatory command input to the motor pattern generators of the crustacean stomatogastric ganglion. I. The pyloric rhythm. J Comp Physiol 143: 453–463.

    Article  Google Scholar 

  • Robertson RM, Moulins M (1984) Oscillatory command input to the motor pattern generators of the crustacean stomatogastric ganglion. II. The gastric rhythm. J Comp Physiol 154: 473–491.

    Article  Google Scholar 

  • Robertson RM, Pearson KG (1983) Interneurons in the flight system of the locust: distribution, connections and resetting properties. J Comp Neurol 215: 33–50.

    Article  PubMed  CAS  Google Scholar 

  • Robertson RM, Pearson KG (1984) Interneuronal organization in the flight system of the locust. J Insect Physiol 30: 95–101.

    Article  Google Scholar 

  • Robertson RM, Pearson KG (1985a) Neural circuits in the flight system of the locust. J Neurphysiol 53: 110–128.

    CAS  Google Scholar 

  • Robertson RM, Pearson KG (1985b) Neural networks controlling locomotion in locusts. In: Selverston AI (ed) Model neural networks and behavior. Plenum Press, New York, London, pp 21–35.

    Google Scholar 

  • Robertson RM, Pearson KG, Reichert H (1982) Flight interneurons in the locust and the origin of insect wings. Science 217: 177–179.

    Article  PubMed  CAS  Google Scholar 

  • Romer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol 155: 249–262.

    Article  Google Scholar 

  • Rowell CHF, Pearson KG (1983) Ocellar input to the flight motor system of the locust: structure and function. J Exp Biol 103: 265–288.

    Google Scholar 

  • Rowell CHF, Reichert H (1985) Compensatory steering in locusts: integration of non-phase locked input with a rhythmic motor output. In: Gewecke M, Wendler G (eds) Insect locomotion. Paul Parey, Berlin, Hamburg, pp 175–182.

    Google Scholar 

  • Sakaguchi DS, Murphey RK (1983) The equilibrium detecting system of the cricket: physiology and morphology of an identified interneuron. J Comp Physiol 150: 141–152.

    Article  Google Scholar 

  • Sattelle DB (1980) Acetylcholine receptors of insects. Adv Insect Physiol 15: 215–315.

    Article  CAS  Google Scholar 

  • Sattelle BD, Harrow ID, Hue B, Pelhate M, Gepner JI, Hall LM (1983) α -Bungarotoxin blocks excitatory synaptic transmission between cercal sensory neurones and giant interneurone 2 of the cockroach, Periplaneta americana. J Exp Biol 107: 473–489.

    CAS  Google Scholar 

  • Satterlie RA (1985) Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator. Science 229: 402–404.

    Article  PubMed  CAS  Google Scholar 

  • Schildberger K (1884a) Multimodal interneurones in the cricket brain: properties of identified extrinsic mushroom body cells. J Comp Physiol 154: 71–79.

    Article  Google Scholar 

  • Schildberger K (1984b) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol 155: 171–185.

    Article  Google Scholar 

  • Schildberger K (1987) Acoustic communication in crickets: Behavioral and neuronal mechanisms of song recognition and localization. (This volume)

    Google Scholar 

  • Schofield PK, Treherne JE (1984) Localization of the blood-brain barrier of an insect: electrical model and analysis. J Exp Biol 109: 319–331.

    Google Scholar 

  • Schofield PK, Swales LS, Treherne JE (1984a) Potentials associated with the blood-brain barrier of an insect: recordings from identified neuroglia. J Exp Biol 109: 307–318.

    Google Scholar 

  • Schofield PK, Swales LS, Treherne JE (1984b) Quantitative analysis of cellular and paracellular effects involved in disruption of the blood-brain barrier of an insect by hypertonic urea. J Exp Biol 109: 333–340.

    Google Scholar 

  • Selverston AI (1980) Are central pattern generators understandable? Behav Brain Sci J: 535–571.

    Google Scholar 

  • Shaw SR (1969) Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res 9: 999–1029.

    Article  PubMed  CAS  Google Scholar 

  • Shaw SR (1975) Retinal resistance barriers and electrical lateral inhibition. Nature 255: 480–483.

    Article  PubMed  CAS  Google Scholar 

  • Shaw SR (1979) Signal transmission by graded slow potentials in the arthropod visual system. In: Schmitt FO, Worden FG (eds) The neurosciences: fourth study program. MIT Press, Cambridge, Massachusetts, pp 275–295.

    Google Scholar 

  • Shaw SR (1981) Anatomy and physiology of identified non-spiking cells in the photreceptor-lamina complex of the compound eye of insects, especially Diptera. In: Roberts A, Bush BMH (eds) Neurones without impulses. Cambridge University Press, Cambridge, UK. pp 61–116.

    Google Scholar 

  • Shaw SR (1983) Is the blood-brain barrier of insects Just a single seal of tight Junctions, as in vertebrates? Soc Neurosci Abstr 9: 885.

    Google Scholar 

  • Shaw SR (1984) Early visual processing in insects. J Exp Biol 112: 225–251.

    PubMed  CAS  Google Scholar 

  • Shaw SR, Henken DB (1984) The formation of the insect blood-brain barrier: evidence from the cockroach nerve cord against the tight Junction hypothesis. In: Bořkovec AB, Kelly TJ (eds) Insect neurochemistry and neurophysiology. Plenum Press, New York. pp 471–473.

    Google Scholar 

  • Shepherd D, Murphey RK (1985) Competition controls quantal release at an identified insect synapse. Soc Neurosci Abstr 11: 958.

    Google Scholar 

  • Seigler MVS (1981a) Posture and history of movement determine membrane potential and synaptic events in nonspiking interneurons and motor neurons of the locust. J Neurophysiol 46: 296–309.

    Google Scholar 

  • Siegler MVS (1981b) Postural changes alter synaptic interactions between nonspiking interneurons and motor neurons of the locust. J Neurophysiol 46: 310–323.

    PubMed  CAS  Google Scholar 

  • Siegler MVS (1982) Electrical coupling between supernumerary motor neurones in the locust. J Exp Biol 101: 105–119.

    PubMed  CAS  Google Scholar 

  • Siegler MVS (1984) Local interneurones and local interactions in arthropods. J Exp Biol 112: 253–281.

    Google Scholar 

  • Siegler MVS (1985) Non-spiking interneurons and motor control in insects. Adv Insect Physiol 18: 249–304.

    Article  Google Scholar 

  • Siegler MVS, Burrows M (1979) The morphology of local non-spiking interneurones in the metathoracic ganglion of the locust. J Comp Neurol 183: 121–147.

    Article  PubMed  CAS  Google Scholar 

  • Siegler MVS, Burrows M (1984) The morphology of two groups of spiking local interneurons in the metathoracic ganglion of the locust. J Comp Neurol 224: 463–482.

    Article  PubMed  CAS  Google Scholar 

  • Simmons PJ (1980) A locust wind and ocellar brain neurone. J Exp Biol 85: 281–294.

    Google Scholar 

  • Simmons PJ (1981) Synaptic transmission between second- and third-order neurones of a locust ocellus. J Comp Physiol 145: 265–276.

    Article  Google Scholar 

  • Simmons PJ (1982) Transmission mediated with and without spikes at connexions between large second-order neurones of locust ocelli. J Comp Physiol 147: 401–414.

    Article  Google Scholar 

  • Simmons PJ (1985) Postsynaptic potentials of limited duration in visual neurones of a locust. J Exp Biol 117: 193–213.

    Google Scholar 

  • Sombati S, Hoyle G (1984a) Central nervous sensitization and dishabituation of reflex action in an insect by the neuromodulator octopamine. J Neurobiol 15: 455–480.

    Article  PubMed  CAS  Google Scholar 

  • Sombati S, Hoyle G (1984b) Glutamatergic central nervous transmission in locusts. J Neurobiol 15: 507–516.

    Article  PubMed  CAS  Google Scholar 

  • Spira ME, Yarom Y, Parnas I (1976) Modulation of spike frequency by regions of special axonal geometry and by synaptic inputs. J Neurophysiol 39: 882–899.

    PubMed  CAS  Google Scholar 

  • Spira ME, Yarom Y, Zeldes D (1984) Neuronal interactions mediated by neurally evoked changes in the extracellular potassium concentration. J Exp Biol 112: 179–197.

    PubMed  CAS  Google Scholar 

  • Steeves JD, Pearson KG (1982) Proprioceptive gating of inhibitory pathways to hindleg flexor motoneurons in the locust. J Comp Physiol 146: 507–515.

    Article  Google Scholar 

  • Stewart WW (1978) Fuuntional connections between cells, as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14: 741–759.

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ (ed) (1983) Functional neuroanatomy. Springer series in experimental entomology. Springer Verlag, New-York, Heidelberg, Berlin.

    Google Scholar 

  • Strausfeld NJ, Bassemir UK (1983) Cobalt-coupled neurons of a giant fibre system in Diptera. J Neurocytol 12: 971–991.

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Obermeyer M (1976) Resolution of intraneuronal and transynaptic migration of cobalt in the insect visual and central nervous system. J Comp Physiol 110: 1–12.

    CAS  Google Scholar 

  • Taghert PH, Goodman CS (1984) Cell determination and differentiation of identified serotonin-immunoreactive neurons in the grasshopper embryo. J Neurosci 4: 989–1000.

    PubMed  CAS  Google Scholar 

  • Tanouye MA, Wyman RJ (1980) Motor outputs of the giant nerve fibre in Drosophila. J Neurophysiol 44: 405–421.

    PubMed  CAS  Google Scholar 

  • Thomas JB, Wyman RJ (1984) Mutations altering synaptic connectivity between identified neurons in Drosophila. J Neurosci 4: 530–538.

    PubMed  CAS  Google Scholar 

  • Treherne JE (1985) Blood-brain barrier. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and physiology. Pergamon Press, New York, Vol 5, pp 115–137.

    Google Scholar 

  • Treherne JE, Pichon Y (1972) The insect blood-brain barrier. Adv Insect Physiol 9: 257–313.

    Article  CAS  Google Scholar 

  • Treherne JE, Schofield PK (1981) Mechanisms of ionic homeostasis in the central nervous system of an insect. J Exp Biol 95: 61–73.

    PubMed  CAS  Google Scholar 

  • Treherne JE, Schofield PK, Lane NJ (1973) Experimental disruption of the blood-brain barrier system of an insect (Periplaneta americana L.) J Exp Biol 59: 711–723.

    Google Scholar 

  • Treherne JE, Schofield PK, Lane NJ (1982)Physiological and ultrastructural evidence for an extracellular anion matrix in the central nervous system of an insect (Periplaneta americana). Brain Res 247: 255–267.

    Article  PubMed  CAS  Google Scholar 

  • Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Phil Trans R Soc Lond B 297: 91–123.

    Article  Google Scholar 

  • Usherwood PNR (1961) Spontaneous miniature potentials from insect muscle fibres. Nature 191: 814–815.

    Article  PubMed  CAS  Google Scholar 

  • Usherwood PNR (1977) Neuromuscular transmission in insects. In: Hoyle G (ed) Identified neurons and behavior of Arthropods. Plenum Press, New York, pp 31–48.

    Google Scholar 

  • Wachtel H, Kandel ER (1967) A direct synaptic connection mediating both excitation and inhibition. Science 158: 1206–1208.

    Article  PubMed  CAS  Google Scholar 

  • Walker RJ, James VA, Roberts CJ, Kerkut GA (1980) Neurotransmitter receptors in invertebrates. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier, Amsterdam, pp 41–57.

    Google Scholar 

  • Wang-Bennett LT, Glantz RM (1986) Integration and spike initiation in neuronal terminals. J Neurosci 6: 1726–1732.

    PubMed  CAS  Google Scholar 

  • Watson AHD, Burrows M (1982) The ultrastructure of identified locust motor neurones and their synaptic relationships. J Comp Neurol 205: 383–397.

    Article  PubMed  CAS  Google Scholar 

  • Watson AHD, Burrows M (1983) The morphology, ultrastructure and distribution of synapses on an intersegmental interneurone of the locust. J Comp Neurol 214: 154–169.

    Article  PubMed  CAS  Google Scholar 

  • Weeks JC, Truman JW (1984a) Neural organization of peptide-activated ecdysis behaviors during the metamorphosis of Manduca sexta. I. Conservation of the peristalsis motor pattern at the larval-pupal transformation. J Comp Physiol 155: 407–422.

    Article  Google Scholar 

  • Weeks JC, Truman JW (1984b) Neural organization of peptide-activated ecdysis behaviors during the metamorphosis of Manduca sexta. II. Retention of the proleg motor pattern despite loss of the prolegs at pupation. J Comp Physiol 155: 423–433.

    Article  Google Scholar 

  • Weevers R de G (1985) The insect ganglia. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, New York. Vol 5, pp 213–297.

    Google Scholar 

  • Weis-Fogh T (1956) Biology and physics of locust flight. IV. Notes on sensory mechanisms in locust flight. Phil Trans R Soc LOnd B 239: 553–584.

    Article  Google Scholar 

  • Wendler G (1983a) The interaction of peripheral and central components in insect locomotion. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer Verlag, Berlin, Heidelberg. pp 42–53.

    Chapter  Google Scholar 

  • Wendler G (1983b) The locust flight system: functional aspects of sensory input and methods of investigation. In: Nachtigall W (ed) BIONA-report 2. Gustav Fisher, Stuttgart, pp 113–125.

    Google Scholar 

  • Wendler G (1985) Insect locomotory system: control by proprioceptive and exteroceptive inputs. In: Gewecke M, Wendler G (eds) Insect locomotion. Verlag Pual Parey, Berlin, Heidelberg, pp 245–254.

    Google Scholar 

  • Wiersma CAG (1952) Neurons of arthropods. Symp Quant Biol 17: 155–163.

    CAS  Google Scholar 

  • Wilson DM (1961) The central nervous control of flight in a locust. J Exp Biol 38: 471–490.

    Google Scholar 

  • Wilson JA (1981) Unique, identifiable local non-spiking interneurons in the locust mesothoracic ganglion. J Neurobiol 12: 353–366.

    Article  PubMed  CAS  Google Scholar 

  • Wilson JA, Phillips CE (1982) Locust local non-spiking interneurons drive antagonistic motor neurons: physiology, morphology and ultrastructure. J Comp Physiol 204: 21–31.

    CAS  Google Scholar 

  • Wilson JA, Phillips CE (1983) Pre-motor non-spiking interneurons. Prog Neurobiol 20: 89–107.

    Article  PubMed  CAS  Google Scholar 

  • Wilson M (1978) Generation of graded potential signals in the second order cells of locust ocellus. J Comp Physiol 124: 317–331.

    Article  Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket Gryllus campestris L. J Comp Physiol 146: 161–173.

    Article  Google Scholar 

  • Wolf H, Pearson KG (1987) Comparison of motor patterns in the intact and deafferented flight system of the locust. II. Intracellular recordings from flight motoneurons. J Comp Physiol A (in press).

    Google Scholar 

  • Wyman RJ, Thomas JB, Salkoff L, King DG (1984) The Drosophila giant fiber system. In: Eaton RC (ed) Neural mechanisms of startle behavior. Plenum Press, New York, London, pp 133–161.

    Google Scholar 

  • Wyman RJ, Thomas JB, Salkoff L, Costello W (1985) The Drosophila thorax as a model system for neurogenetics. In: Selverston AI (ed) Model neural networks and behavior. Plenum Press, New York, London. pp 513–535.

    Google Scholar 

  • Yarom Y, Spira ME (1982) Extracellular potassium ions mediate specific neuronal interaction. Science 216: 80–82.

    Article  PubMed  CAS  Google Scholar 

  • Yawo H, KoJima H, Kuno M (1985) Low-threshold, slow-inactivating Na+ potentials in the cockroach giant axon. J Neurophysiol 54: 1087–1100.

    PubMed  CAS  Google Scholar 

  • Zaretsky M, Loher W (1983) Anatomy and electrophysiology of individual neruosecretory cells of an insect brain. J Comp Neurol 216: 253–263.

    Article  PubMed  CAS  Google Scholar 

  • Zill SN (1985) Plasticity and proprioception in insects. II. Modes of reflex action of the locust metathoracic femoral chordotonal organ. J Exp Biol 116: 463–480.

    PubMed  CAS  Google Scholar 

  • Zill SN, Forman RR (1983) Proprioceptive reflexes change when an insect assumes an active, learned posture. J Exp Biol 107: 385–390.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Robertson, R.M. (1987). Insect Neurons: Synaptic Interactions, Circuits and the Control of Behavior. In: Ali, M.A. (eds) Nervous Systems in Invertebrates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1955-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1955-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9084-1

  • Online ISBN: 978-1-4613-1955-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics