Skip to main content

Jejunum and villi: Structural basis of intestinal absorption

  • Chapter
Ultrastructure of the Digestive Tract

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 4))

Abstract

The jejunum is the main portion of the intestine involved in the digestion and absorption of nutrients in the digestive canal. According to an old concept, the food materials were believed to be first broken down into micromolecules, such as amino acids or monosaccharides, by digestive enzymes in the lumen of the digestive canal and then absorbed through the epithelial lining into the blood capillaries or lymphatics. However, since it has been revealed that terminal digestive enzymes such as disaccharidases and dipeptidases are concentrated in the brush border membrane of absorptive cells (1,2), this concept had to be revised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller D, Crane RK: The digestive function of the epithelium of the small intestine. II. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochim Biophys Ada 52: 293–298, 1961.

    Article  CAS  Google Scholar 

  2. Peters TJ: The subcellular localization of di- and tripeptide hydrolase activity in guinea pig small intestine. Biochem J 120: 195–203, 1970.

    PubMed  CAS  Google Scholar 

  3. Ito S: The enteric surface coat on cat intestinal microvilli. J Cell Biol 27: 475–491, 1965.

    Article  PubMed  CAS  Google Scholar 

  4. Mooseker MS, Tilney LG: Organization of an actin filament-membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol 67: 725–743, 1975.

    Article  PubMed  CAS  Google Scholar 

  5. Mooseker MS, Pollard TD, Fujiwara K: Characterization and localization of myosin in the brush border of intestinal epithelial cells. J Cell Biol 79: 444–453, 1978.

    Article  PubMed  CAS  Google Scholar 

  6. Luft JH: Electron microscopy of cell extraneous coats as revealed by ruthenium red staining. J Cell Biol 23: 54A, 1964.

    Google Scholar 

  7. Bennett HS: Morphological aspects of extracellular polysaccharides. J Histochem Cytochem 11: 14–23, 1963.

    Article  Google Scholar 

  8. Singer SJ, Nicolson GL: The fluid mosaic model of the structure of cell membranes. Science 175: 720–731, 1972.

    Article  PubMed  CAS  Google Scholar 

  9. Branton D: Fracture faces of frozen membranes. Proc Nat Acad Sci USA 55: 1048–1056, 1966.

    Article  PubMed  CAS  Google Scholar 

  10. Pinto da Silva P, Branton D: Membrane splitting in freeze-etching. J Cell Biol 45: 598–605, 1970.

    Article  Google Scholar 

  11. Goodenough UW, Staehelin LA: Structural differentiation of stacked and unstacked chloroplast membranes: Freeze-etch electron microscopy of wild-type and mutant strains of chlamydomonas. J. Cell Biol 48: 594–619, 1971.

    Article  PubMed  CAS  Google Scholar 

  12. Staehelin LA, Chlapowski FJ, Bonneville MA: Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images. J Cell Biol 53: 73–91, 1972.

    Article  PubMed  CAS  Google Scholar 

  13. Kreutzinger GO: Freeze-etching of intercellular junctions of mouse liver. Proc 26th Electron Microscopy Soc Amer, Baton-Rouge: Claitor’s Publ p 234–235, 1968.

    Google Scholar 

  14. Chalcroft JP, Bullivant S: An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture. J Cell Biol 47: 49–60, 1970.

    Article  PubMed  CAS  Google Scholar 

  15. McNutt NS, Weinstein RS: The ultrastructure of the nexus: A correlated thin-section and freeze-cleave study. J Cell Biol 47: 666–688, 1970.

    Article  PubMed  CAS  Google Scholar 

  16. Friend, DS, Gilula NB: Variations in tight and gap junctions in mammalian tissues. J Cell Biol 53: 758–776, 1972.

    Article  PubMed  CAS  Google Scholar 

  17. Gilula NB, Reeves OR, Steinbach A: Metabolic coupling, ionic coupling and cell contacts. Nature (London) 235: 262–265, 1972.

    Article  PubMed  CAS  Google Scholar 

  18. Peracchia C: Low resistance junctions in crayfish. II. Structural details and further evidence for intercellular channels by freeze-fracture and negative staining. J Cell Biol 57: 66–76, 1973.

    Article  PubMed  CAS  Google Scholar 

  19. Singer SJ: Architecture and topography of biologic membranes. In: Cell Membranes: Biochemistry, Cell Biology and Pathology. G Weissman and R Claiborne (eds), New York: HP Publ, p 35–44, 1975.

    Google Scholar 

  20. Rosenberg T, Wilbrandt W: Carrier transport uphill. I. General. J Theor Biol 5: 288–305, 1963.

    Article  PubMed  CAS  Google Scholar 

  21. Crane RK: Na-dependent transport in the intestine and other animal tissues. Fed Proc 24: 1000–1006, 1965.

    PubMed  CAS  Google Scholar 

  22. Muecker M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF: Sequence and structure of a human glucose transporter. Science 229: 941–945, 1985.

    Article  Google Scholar 

  23. Dahlqvist A, Brun A: A method for the histochemical demonstration of disaccharidase activities: Application of invertase and trehalase in some animal tissues. J Histochem Cytochem 10: 294–302, 1962.

    Article  CAS  Google Scholar 

  24. Doell RG, Rosen G, Kretchmer N: Immunological studies of intestinal disaccharidases during normal and precocious development. Proc Nat Acad Sci USA 54: 1268–1273, 1965.

    Article  PubMed  CAS  Google Scholar 

  25. Oda T, Seki S: Molecular basis of structure and function of the plasma membrane of the microvilli of intestinal epithelial cells. In: Electron Microscopy, Vol II Biology R Ueda (ed), Tokyo: Maruzen Co, p 387, 1966.

    Google Scholar 

  26. Benson RL, Sacktor B, Greenwalt JW: Studies on the ultrastructural localization of intestinal disaccharidases. J Cell Biol 48: 711–716, 1971.

    Article  PubMed  CAS  Google Scholar 

  27. Nishi Y, Takesue Y: Localization of intestinal sucraseisomaltase complex on the microvillous membrane by electron microscopy using non-labeled antibodies. J Cell Biol 79: 516–525, 1978.

    Article  PubMed  CAS  Google Scholar 

  28. Braun HA, Cogoli A, Semenza G: Dissociation of small-intestinal sucrase-isomaltase complex into enzymatically active subunits. Europ J Biochem 52: 475–480, 1975.

    Article  PubMed  CAS  Google Scholar 

  29. Ugolev AM: Membrane (contact) digestion. Physiol Rev 45: 555–595, 1965.

    PubMed  CAS  Google Scholar 

  30. Parson DS, Prichard LI: Relationships between disaccharide hydrolysis and sugar transport in amphibian small intestine. J Physiol 212: 299–319, 1971.

    PubMed  CAS  Google Scholar 

  31. Storelli C, Vogeli H, Semenza G: Reconstruction of a sucrase-mediated sugar transport system in lipid membranes. FEBS Letters 24: 287–292, 1972.

    Article  PubMed  CAS  Google Scholar 

  32. Malathi P, Ramaswamy K, Caspary WF, Crane RK: Studies on the transport of glucose from disaccharidases by hamster small intestine in vivo. I. Evidence for a disaccharidase-related transport system. Biochim Biophys Acta 307: 613–626, 1973.

    Article  PubMed  CAS  Google Scholar 

  33. Semenza G: Small intestinal disaccharidases: Their properties and role as sugar translocators across natural and artificial membranes. In: The Enzymes of Biological Membranes, Vol 3. Martonosi (ed), New York: Plenum Press p 349–382, 1976.

    Google Scholar 

  34. Weiss J: The role of the Golgi complex in fat absorption as studied with the electron microscope with observations on the cytology of duodenal absorptive cells. J Exp Med 102: 775–782, 1955.

    Article  PubMed  CAS  Google Scholar 

  35. Palay SL, Karlin LJ: An electron microscopic study of the intestinal villus. II. The pathway of fat absorption. J Biophys Biochem Cytol 5: 373–384, 1959.

    Article  PubMed  CAS  Google Scholar 

  36. Cardell RR, Badenhausen C, Porter KR: Intestinal triglyceride absorption in the rat: An electron microscopical study. J Cell Biol 34: 123–155, 1967.

    Article  PubMed  CAS  Google Scholar 

  37. Clark SL: The ingestion of proteins and colloidal materials by columnar absorptive cells of the small intestine in suckling rats and mice. J Biophys Biochem Cytol 5: 41–50, 1959.

    Article  PubMed  Google Scholar 

  38. Rodewald R: Selective antibody transport in the proximal small intestine of neonatal rat. J Cell Biol 45: 635–640, 1970.

    Article  PubMed  CAS  Google Scholar 

  39. Yamamoto T: An electron microscope study of the columnar epithelial cell in the intestine of fresh water teleosts; goldfish (Carassius auratus) and rainbow trout (Salmo irideus). Z Zellforsch 72: 66–87, 1966.

    Article  PubMed  CAS  Google Scholar 

  40. Kraehenbuhl JP and Campiche MA: Early stages of intestinal absorption of specific antibodies in the newborn. An ultrastructural, cytochemical and immunological study in the pig, rat and rabbit. J Cell Biol 42: 345–365, 1969.

    Article  PubMed  CAS  Google Scholar 

  41. Rodewald R: Distribution of immunoglobulin G receptor in the small intestine of the young rat. J Cell Biol 85: 18–32, 1980.

    Article  PubMed  CAS  Google Scholar 

  42. Rodewald R: Intestinal transport of antibodies in the newborn rat. J Cell Biol 58: 189–211, 1973.

    Article  PubMed  CAS  Google Scholar 

  43. Jakoi ER, Zampighi G, Robertson JD: Regular structures in unit membranes. II. Morphological and biochemical characterization of two water-soluble membrane proteins isolated from the suckling rat ileum. J Cell Biol 70: 97–111, 1976.

    Article  PubMed  CAS  Google Scholar 

  44. Robertson JD, Knutton S, Limbrick AR, Jakoi ER, Zampighi G: Regular structures in unit membranes. III. Further observations on the particulate component of the suckling rat ileum endocytic membrane complex. J Cell Biol 70: 112–122, 1976.

    Article  PubMed  CAS  Google Scholar 

  45. Shibata Y, Arima T, Arima T, Yamamoto T: Regular structures on the microvillar surface membrane of ileal epithelial cells in suckling rat intestine. J Ultrastruct Res 85: 70–81, 1983.

    Article  PubMed  CAS  Google Scholar 

  46. Yamamoto T: Absorption across the plasma membrane of the intestinal absorptive cells. Acta Histochem Cytochem 5: 266–268, 1972.

    Article  Google Scholar 

  47. Iida H, Yamamoto T: Morphological studies of the goldfish hindgut mucosa in organ culture. Cell Tiss Res 238: 523–528, 1984.

    Article  CAS  Google Scholar 

  48. Yamamoto T, Arima T, Shibata Y, Iida H, Hirakawa Y: Freeze-fracture study of membrane systems in absorptive cells of the hindgut of goldfish (Carassius auratus). Proc of the 3rd Asia-Pacific Conference on Electron Microscopy (Singapore) p 390–390, 1984.

    Google Scholar 

  49. Iida H, Yamamoto T: Intracellular transport of horseradish peroxidase in the absorptive cells of goldfish hindgut in vitro, with special reference to the cytoplasmic tubules. Cell Tiss Res 240: 553–560, 1985.

    Article  Google Scholar 

  50. Iida H, Shibata Y, Yamamoto T: The endosome-lysosome system in the absorptive cells of goldfish hindgut. Cell Tiss Res 243: 449–452, 1986.

    Article  Google Scholar 

  51. Graney DO: The uptake of ferritin by ileal absorptive cells in suckling rats. An electron microscope study. Am J Anat 123: 227–254, 1968.

    Article  PubMed  CAS  Google Scholar 

  52. Cooper M, Teichberg S, Lifshitz F: Alterations in rat jejuna’ permeability to a macromolecular tracer during a hyperosmotic load. Lab Invest 38: 447–454, 1978.

    Article  PubMed  CAS  Google Scholar 

  53. Bockman DE, Winborn WB: Light and electron microscopy of intestinal ferritin absorption. Observations in sensitized and nonsensitized hamsters (Mescoricetus auratus). Anal Rec 155: 603–622, 1966.

    Article  Google Scholar 

  54. Cornell R, Walker WA, Isselbacher KJ: Small intestinal absorption of horseradish peroxidase: A cytochemical study. Lab Invest 25: 42–48, 1971.

    PubMed  CAS  Google Scholar 

  55. Warshaw AL, Walker WA, Cornell R, Isselbacher KJ: Small intestinal permeability to macromolecules: Transmission of horseradish peroxidase into mesenteric lymph and portal blood. Lab Invest 25: 675–684, 1971.

    PubMed  CAS  Google Scholar 

  56. Walker WA, Cornell R, Davenport LM, Isselbacher KJ: Macromolecular absorption: Mechanism of horseradish peroxidase uptake and transport in adult and neonatal rat intestine. J Cell Biol 54: 195–205, 1972.

    Article  PubMed  CAS  Google Scholar 

  57. Worthington BS, Syrotuk J: Intestinal permeability to large particles in normal and protein deficient adult rats. J Nutr 106: 20–32, 1976.

    PubMed  CAS  Google Scholar 

  58. Warshaw AL, Walker WA, Isselbacher KJ: Protein uptake by the intestine: Evidence for absorption of intact macromolecules. Gastroenterology 66: 987–992, 1974.

    PubMed  CAS  Google Scholar 

  59. Williams EW, Hemmings WA: Intestinal uptake and transport of proteins in the adult rat. Proc Roy Soc London B 203: 177–189, 1978.

    Google Scholar 

  60. Blok J, Mulder-Stapel AA, Ginsel LA, Daems WTH: Endocytosis in absorptive cells of cultured human small intestinal tissue: Horseradish peroxidase, lactoperoxidase and ferritin as markers. Cell Tiss Res 216: 1–13, 1981.

    Article  CAS  Google Scholar 

  61. Yamamoto T: Ultrastructural basis of intestinal absorption. Arch Histol Japon 45: 1–22, 1982.

    Article  CAS  Google Scholar 

  62. Machen TE, Erlij D, Wooding FBP: Permeable junctional complexes: The movement of lanthanum across rabbit gall bladder and intestine. J Cell Biol 54: 302–312, 1972.

    Article  PubMed  CAS  Google Scholar 

  63. Claude P, Goodenough DA: Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58: 390–400, 1973.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Yamamoto, T. (1988). Jejunum and villi: Structural basis of intestinal absorption. In: Motta, P.M., Fujita, H., Correr, S. (eds) Ultrastructure of the Digestive Tract. Electron Microscopy in Biology and Medicine, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2071-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2071-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9229-6

  • Online ISBN: 978-1-4613-2071-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics