Skip to main content

Barbiturate and Opiate Actions on Calcium-Dependent Action Potentials and Currents of Mouse Neurons in Cell Culture

  • Chapter
Calcium in Biological Systems

Abstract

The purpose of this chapter is to consider the actions of depressant drugs on calcium entry into neurons. Since presynaptic calcium entry is an essential link in excitation-secretion coupling of synaptic transmission, a reduction of calcium entry by depressant drugs should produce a reduction in neurotransmitter release and therefore a reduction in synaptic transmission. In this chapter we will review evidence obtained by using intracellular recordings from mouse neurons in primary dissociated cell culture which indicates that barbiturate and opiate drugs reduce presynaptic calcium entry. Evidence will also be presented which suggest that there are substantial differences in the manner in which these two drug classes modify calcium movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaustein, M. P.; Ector, A. C. Barbiturate inhibition of calcium uptake by depolarized nerve terminals in vitro. Mol. Pharmacol 11: 369–378, 1975.

    CAS  Google Scholar 

  2. Chang, K.-J.; Hazum, E.; Cuatrecasas, P. Novel opiate binding sites selective for benzomorphan drugsProc. Natl. Acad. Sci. USA 78: 4141–4145, 1981.

    Article  PubMed  CAS  Google Scholar 

  3. Chang, K.-J.; Kittan, A.; Hazum, E.; Cuatrecasas, P.; Change, J.-K. Morphiceptin (NH4-Tyr-Pro-Phe-Pro- Pro-CONH2): A potent and specific agonist for morphine (A) receptorsScience 212: 75–77, 1981.

    Article  PubMed  CAS  Google Scholar 

  4. Chavkin, C.; James, I. F.; Goldstein, A. Dynorphin is a specific endogenous ligand of the K opioid receptorScience 215: 413–415, 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Dichter, M. A.; Fischbach, G. D. The action potential of chick dorsal root ganglion neurones maintained in cell culture J. Physiol. (London) 267: 281–298, 1977.

    CAS  Google Scholar 

  6. Fields, H. L.; Emson, P. C.; Leigh, B. K.; Gilbert, R. F. T.; Iversen, L. L. Multiple opiate receptor sites on 1° afferent fibresNature (London) 284: 351–353, 1980.

    Article  CAS  Google Scholar 

  7. Gämse, R.; Holzer, P.; Lembeck, F. Indirect evidence for presynaptic location of opiate receptors on chemo- sensitive primary sensory neuronsNaunyn-Schmiedeberg’s Arch Pharmacol 308: 281–285, 1979.

    Google Scholar 

  8. Goldring, J. M.; Blaustein, M. P. Effect of pentobarbital on Na and Ca action potentials in an invertebrate neuronBrain Res 240: 273–283, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Heyer, E. J.; Macdonald, R. L. Calcium- and sodium-dependent action potentials of mouse spinal cord and dorsal root ganglion neurons in cell cultureJ. Neurophysiol 97: 641–655, 1982.

    Google Scholar 

  10. Heyer, E. J.; Macdonald, R. L. Barbiturate reduction of calcium dependent action potentials: Correlation with anesthetic actionBrain Res 236: 157–171, 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Hiller, J. M.; Simon, E. J.; Crain, S. M.; Peterson, E. R. Opiate receptors in cultures of fetal mouse DRG and spinal cord: Predominance in DRG neuritesBrain Res 145: 396–400, 1978.

    CAS  Google Scholar 

  12. Jessell, T. M.; Iversen, L. L. Opiate analgesics inhibit substance P release from rat trigeminal nucleusNature (London) 268: 549–551, 1977.

    Article  CAS  Google Scholar 

  13. Katz, M.; Miledi, R. Tetrodotoxin-resistant electric activity in presynaptic terminalsJ. Physiol. (London) 203: 459–487, 1969.

    CAS  Google Scholar 

  14. Kosterlitz, H. W.; Lord, J. A. H.; Paterson, S. J.; Waterfield, A. A. Effects of changes in the structures of enkephalins of narcotic analgesic drugs on their interactions with µ- and α-receptorsBr. J. Pharmacol 68: 333–342, 1980.

    PubMed  CAS  Google Scholar 

  15. Lamotte, C.; Pert, C. B.; Snyder, S. H. Opiate receptor binding in primate spinal cord: Distribution and changes after dorsal root sectionBrain Res 112: 407–412, 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Lindmar, R.; Loffelholz, K.; Weide, W. Inhibition by pentobarbital of the acetylcholine release from the postganglionic parasympathetic neuron of the heartJ. Pharmacol. Exp. Ther 210: 166–173, 1979.

    PubMed  CAS  Google Scholar 

  17. Macdonald, R. L.; Barker, J. L. Neuropharmacology of spinal cord neurons in primary dissociated cell culture. In: Excitable Cells in Tissue Culture, P. G. Nelson and M. Lieberman, eds., New York, Plenum Press, 1981, pp. 81–109.

    Google Scholar 

  18. Macdonald, R. L.; McLean, M. J. Cellular bases of barbiturate and phenytoin anticonvulsant drug action. Epilepsia 23 (Suppl. 1): S7 - S18, 1982.

    Article  PubMed  Google Scholar 

  19. Macdonald, R. L.; Nelson, P. G. Specific opiate-induced depression of transmitter release from dorsal root ganglion cells in cultureScience 199: 1449–1451, 1978.

    Article  PubMed  CAS  Google Scholar 

  20. Macdonald, R. L.; Werz, M. A. Barbiturates decrease voltage-dependent calcium conductance of mouse neurons in dissociated cell cultureSoc. Neurosci. Abstr 8: 568, 1982.

    Google Scholar 

  21. Macdonald, R. L.; Werz, M. A. Dynorphin decreases calcium conductance of mouse cultured dorsal root ganglion neuronsSoc. Neurosci. Abstr 9: 1129, 1983.

    Google Scholar 

  22. Miller, R. J. Multiple opiate receptors for multiple opioid peptidesMed. Biol 60: 1–6, 1982.

    PubMed  CAS  Google Scholar 

  23. Mudge, A. W.; Leeman, S. E.; Fischbach, G. D. Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential durationProc. Natl. Acad. Sci. USA 76: 526–530, 1979.

    Article  PubMed  CAS  Google Scholar 

  24. Nelson, P. G.; Neale, E. A.; Macdonald, R. L. Electrophysiological and structural studies of neurons in dissociated cell cultures of the central nervous system. In: Excitable Cells in Tissue Culture, P. G. Nelson and M. Lieberman, eds., New York, Plenum Press, 1980, pp. 50–80.

    Google Scholar 

  25. North, R. A. Opiates, opioid peptides, and single neuronesLife Sci 24: 1527–1546, 1979.

    Article  PubMed  CAS  Google Scholar 

  26. Pert, C. B.; Snyder, S. H. Properties of opiate receptor binding in rat brainProc. Natl. Acad. Sci. USA 70: 2243–2247, 1973.

    Article  PubMed  CAS  Google Scholar 

  27. Prichard, J. W. Barbiturates: Physiological effects I. In: Antiepileptic Drugs: Mechanisms of Action, G. H. Glasser, J. K. Penry, and D. M. Woodbury, eds., New York, Raven Press, 1980, pp. 505–522.

    Google Scholar 

  28. Ransom, B. R.; Neale, E.; Henkart, M.; Bullock, P. N.; Nelson, P. G. Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal electrophysiologic propertiesJ. Neurophysiol 40: 1132–1150, 1977.

    PubMed  CAS  Google Scholar 

  29. Richter, J. A.; Waller, M. B. Effects of pentobarbital on the regulation of acetylcholine content and release on different regions of rat brainBiochem. Pharmacol. 26: 609–615, 1977.

    Google Scholar 

  30. Richter, J. A.; Werling, L. L. K-stimulated acetylcholine release: Inhibition by several barbiturates and chloral hydrate but not by ethanol, chlordiazepoxide or 1 l-OH-9-tetrahydrocannabinolJ. Neurochem 32: 935–941, 1979.

    Article  PubMed  CAS  Google Scholar 

  31. Schulz, D. W.; Macdonald, R. L. Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: Correlation with anticonvulsant and anesthetic actionsBrain Res 209:177–188, 1981.

    Article  PubMed  CAS  Google Scholar 

  32. Simon, E.J.: Hiller, J. M.: Edelman. I. Stereospecific binding of the potent narcotic analgesic [3H] etorphine to rat brain homogenate. Proc. Natl. Acad. Sci. USA 70: 1947–1949, 1973

    Google Scholar 

  33. Terenius, L. Characteristics of the “receptor” for narcotic analgesics in synaptic plasma fraction of rat brainActa Pharmacol. Toxicol 33:377–384, 1973.

    Article  CAS  Google Scholar 

  34. Waller, M. B.; Richter, J. A. Effects of pentobarbital and Cat + on the resting and K + -stimulated release of several endogenous neurotransmitters from rat midbrain slices. Biochem. Pharmacol. 29: 2189–2198, 1980.

    Article  PubMed  CAS  Google Scholar 

  35. Weakly, J. N. Effect of barbiturates on “quantal” synaptic transmission in spinal motoneurones. J. Physiol. (London) 204: 63–77, 1969.

    CAS  Google Scholar 

  36. Werz, M. A.; Macdonald, R. L. Opioid peptides decrease calcium-dependent action potential duration of mouse dorsal root ganglion neurons in cell culture. Brain Res. 239: 315–321, 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Werz, M. A.; Macdonald, R. L. Heterogeneous sensitivity of cultured dorsal root ganglion neurones to opioid peptides selective for V,- and 8-opiate receptors. Nature (London) 299: 730–733, 1982.

    Article  CAS  Google Scholar 

  38. Werz, M. A.; Macdonald, R. L. Opioid peptides selective for mu- and delta-opiate receptors reduce calciumdependent action potential duration by increasing, potassium conductance. Neurosci. Lett. 42: 173–178, 1983

    Article  PubMed  CAS  Google Scholar 

  39. Werz, M. A.; Macdonald, R. L. Opioid peptides with differential affinity for mu- and delta-receptors decrease sensory neuron calcium-dependent action potentials. J. Pharmacol. Exp. Ther. 227: 394–402, 1983.

    PubMed  CAS  Google Scholar 

  40. Waster, M.; Schulz, R.; Herz, A. Opiate activity and receptor selectivity of dynorphin1-13 and related peptides. Neurosci. Lett. 20: 79–83, 1980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

MacDonald, R.L., Werz, M.A. (1985). Barbiturate and Opiate Actions on Calcium-Dependent Action Potentials and Currents of Mouse Neurons in Cell Culture. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics