Skip to main content

Prevention of Arterial Calcium Deposition with Diphosphonates and Calcium Entry Blockers

  • Chapter
Calcium in Biological Systems

Abstract

The arterial disease most commonly associated with an increase in arterial calcium is atherosclerosis. In the past, the deposition of calcium in atherosclerotic lesions has been considered to be an end-stage of advanced atheromata formation only [1]. While such end-stage calcification of plaques certainly is one of the prominent features of late atherosclerosis, it has long been recognized that discrete calcium mineral deposition may occur, especially on intimo-medial elastica, in otherwise normal-appearing arteries [2] and, therefore, may be considered an early event in atherogenesis. In fact, in recent years there has been mounting evidence that localized increases in arterial ionic calcium may play a key role in early atherogenesis, stimulating cellular functions of arterial smooth muscle cells and macrophages such as increased cell migration, mitosis, endocytosis of lipoproteins, as well as excessive synthesis and/or secretion of connective tissue macromolecules [3,4]. Focal increases in arterial calcium content also have been implicated in the early pathobiochemistry of the intercellular matrix molecules. Calcium ions are required for the complexing of low- density (LDL) and very-low-density lipoproteins (VLDL) to sulfated glycosaminoglycans. Calcium-dependent mechanisms may be responsible for the excessive degradation of arterial connective tissue such as the activation of elastolysis by macrophage elastase [5] or the release of collagenolytic, elastolytic, and mucolytic enzymes from platelets [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Heart, Lung and Blood Institute Task Force on Arteriosclerosis. DHEW Publ. (NIH) 72–137. Vol 1971.

    Google Scholar 

  2. Meyer, W. W. The mode of calcification in atherosclerotic lesions. Adv. Exp. Med. Biol 82: 786–792, 1977.

    PubMed  CAS  Google Scholar 

  3. Kramsch, D. M.; Aspen, A. J.; Apstein, C. S. Suppression of experimental atherosclerosis by the Ca- antagonist lanthanum: Possible role of calcium in atherogenesis. J. Clin. Invest 65: 967–981, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Kramsch, D. M.; Aspen, A. J.; Rozler, L. J. Atherosclerosis: Prevention by agents not affecting abnormal levels of blood lipids. Science 213: 1511–1512, 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Werb, Z.; Gordon, S. Elastase secreted by stimulated macrophages. J. Exp. Med 142: 361–377, 1975.

    Article  PubMed  CAS  Google Scholar 

  6. Packham, M. A.; Cazenave, J. P.; Kinlough-Rathbone, R. L.; Mustard, J. F. Drug effects on platelet adherence to collagen and damaged vessel walls. Adv. Exp. Med. Biol 109: 253–276, 1978.

    PubMed  CAS  Google Scholar 

  7. Keeley, F. W.; Partridge, S. M. Amino acid composition and calcification of human aortic elastin. Atherosclerosis 19: 287–296, 1974.

    Article  PubMed  CAS  Google Scholar 

  8. Kramsch, D. M.; Hollander, W. The interaction of serum and arterial lipoproteins with elastin of the arterial intima and its role in the lipid accumulation in atherosclerotic plaques. J. Clin. Invest 52: 236–247, 1973.

    Article  PubMed  CAS  Google Scholar 

  9. Kramsch, D. M. Biochemical changes of the arterial wall in atherosclerosis with special reference to connective tissue: Promising experimental avenues for their prevention. In: Connective Tissues in Arterial and Pulmonary Disease, T. F. McDonald and A. B. Chandler, eds., Berlin, Springer-Verlag, 1981, pp. 95–151.

    Google Scholar 

  10. Ross, R.; Bornstein, P. The elastic fiber. I. Separation and partial characterization of its macromolecular components. J. Cell Biol 40: 366–381, 1969.

    Article  PubMed  CAS  Google Scholar 

  11. Gotte, L.; Meneghali, V.; Castellani, A. Electron microscope observations and chemical analyses of human elastin. In: Structure and Function of Connective and Skeletal Tissue, S. Fitton-Jackson, R. D. Harkness, and G. R. Tristram, eds., London, Butterworths, 1965, pp. 93–101.

    Google Scholar 

  12. Moczar, M.; Robert, L. Extraction and fractionation of the media of thoracic aorta. Atherosclerosis 11: 7–25, 1970.

    Article  PubMed  CAS  Google Scholar 

  13. Urry, D. W.; Cunningham, W. D.; Ohnishi, T. A neutral polypeptide-calcium ion complex. Biochim. Biophys. Acta 292: 853–857, 1973.

    Article  PubMed  CAS  Google Scholar 

  14. Hornebeck, W.; Partridger, S. M. Confirmational changes in fibrous elastin due to calcium ions. Eur. J. Clin. Invest. 51: 73–78, 1975. 15

    Google Scholar 

  15. Weissman, G.; Weissman, S. X-ray diffraction studies of human aortic elastin residues. J. Clin. Invest 39: 1657–1666, 1960.

    Article  Google Scholar 

  16. Yu, S. Y.; Blumenthal, H. T. The calcification of elastic fibers. I. Biochemical

    Google Scholar 

  17. Weissman, G.; Weissman, S. X-ray diffraction studies of human aortic elastin residues. J. Clin. Invest 39: 1657–1666, 1960.

    Article  Google Scholar 

  18. Haust, M. D.; Geer, J. C. Mechanism of calcification in spontaneous artheriosclerotic lesions of the rabbit. Am. J. Pathol 60: 329–338, 1970.

    PubMed  CAS  Google Scholar 

  19. Yu, S. Y. Cross-linking of elastin in human atherosclerotic aorta. Lab. Invest 25: 121–125, 1971.

    PubMed  CAS  Google Scholar 

  20. Bladen, H. A.; Martin, G. R. Preferential mineralization of elastin in a matrix containing collagen. In: Fifth International Congress on Electron Microscopy, New York, Academic Press, 1962, pp. QQ 5.

    Google Scholar 

  21. Lian, J. B.; Skinner, M.; Glimcher, M. J.; Gallop, P. The presence of gamma-glutamic acid in proteins associated with ectopic calcification. Biochem. Biophys. Res. Commun 73: 349–355, 1976.

    Article  PubMed  CAS  Google Scholar 

  22. Fleisch, H.; Russel, R. G. G.; Bisaz, S.; Muehlbauer, R. C.; Williams, D. A. The inhibitory effect of diphosphonates on the formation of calcium phosphate crystals in vitro and on aortic and kidney calcification in vivo. Eur. J. Clin. Invest 1: 12–18, 1970.

    Article  PubMed  CAS  Google Scholar 

  23. Rosenblum, I. Y.; Flora, L.; Eisenstein, R. The effect of sodium ethane-l-hydroxy-l,l-diphosphonate (EHDP) on a rabbit model of arterio-atherosclerosis. Atherosclerosis 22: 411–421, 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Wagner, W. D.; Clarkson, T. B. Slowly miscible cholesterol pools in progressing and regressing atherosclerotic aortas. Proc. Soc. Exp. Biol. Med 143: 804–809, 1973.

    PubMed  CAS  Google Scholar 

  25. Potocar, M.; Schmidt-Dunker, M. The effect of new diphosphonic acids on aortic and kidney calcifications in vivo. Atherosclerosis 30: 313–320, 1978.

    Article  Google Scholar 

  26. Weiss, G. B. Cellular pharmacology of lanthanum. Annu. Rev. Pharmacol 14: 343–354, 1974.

    Article  CAS  Google Scholar 

  27. Weiss, G. B.; Goodman, F. R. Distribution of lanthanide (174Pm) in vascular smooth muscle. J. Pharmacol. Exp. Ther 198: 366–374, 1974.

    Google Scholar 

  28. Kritchevsky, D.; Tepper, S. A.; Vesselinovitch, D.; Wissler, R. W. Cholesterol vehicle in experimental atherosclerosis. Part II (peanut oils). Atherosclerosis 14: 53–64, 1971.

    Article  PubMed  CAS  Google Scholar 

  29. Kramsch, D. M.; Hollander, W.; Renand, S. Induction of fibrous plaques versus foam cell lesions in Macaca fascicularis by varying the composition of dietary fats. Circulation 48: (Suppl. IV): 41, 1973.

    Google Scholar 

  30. Kramsch, D. M.; Aspen, A. J.; Abramowitz, B. M.; Kreimendahl, T.; Hood, W. B. Jr. Reduction of coronary atherosclerosis by moderate conditioning exercise in monkeys on an atherogenic diet. N. Engl. J. Med 305: 1483–1489, 1981.

    Article  PubMed  CAS  Google Scholar 

  31. Henry, P. D.; Bentley, K. I. Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine. J. Clin. Invest 68: 1366–1396, 1981.

    Article  PubMed  CAS  Google Scholar 

  32. Rouleau, J. L.; Parmley, W. W.; Stevens, J.; Wilkman-Coffelt, J.; Sievers, R.; Mahley, R.; Havel, R. J. Verapamil suppresses atherosclerosis in cholesterol-fed rabbits. Am. J. Cardiol 49: 889, 1982.

    Article  Google Scholar 

  33. Kramsch, D. M.; Aspen, A. J.; Swindell, A. C. Trimazosin suppresses fibrosis of atherosclerotic plaques. Fed. Proc 42: 808, 1983.

    Google Scholar 

  34. Robert, A. M.; Moczar, M.; Brechamier, D.; Godeau, G.; Miskulin, M.; Robert, L. Biosynthesis and degradation of matrix molecules of the arterial wall: Regulation by drug action. In: International Symposium: State of Prevention and Therapy in Human Atherosclerosis and in Animal Models, W. H. Hauss, R. W. Wissler, and R. Lehmann, eds., Abh. Rhein.-Westf. Akad. Wiss., Volume 3, Opladen, Germany, Westdeutscher Verlag, 1978, pp. 301–312.

    Google Scholar 

  35. Chan, C. T.; Wells, H.; Kramsch, D. H. Suppression of fibrous-fatty plaque formation in rabbits by agents not affecting elevated serum cholesterol levels: The effect of thiophene compounds. Circ. Res 43: 115–125, 1978.

    PubMed  CAS  Google Scholar 

  36. Lloyd, W.; Fang, W. S.; Wells, H.; Tashjian, A. H. 2-Thiophene carboxylic acid: A hypocalcemic, anti- lipolytic agent with hypocalcemic and hypophosphatemic effects in rats. Endocrinology 85: 763–768, 1969.

    Article  PubMed  CAS  Google Scholar 

  37. Guilland, D. F., Salis, J. D., Fleisch, H. The effect of two diphosphonates on the handling of calcium by rat kidney mitochondria in vitro. Calcif Tissue Res. 15: 303–314, 1974.

    Article  PubMed  CAS  Google Scholar 

  38. Kramsch, D. M.; Chan, C. T.; Wells, H. Effects of thiophene compounds on progression and regression of atherosclerosis in rabbits and cynomolgus monkeys. Abstr. Counc. Arterioscler. Am. Heart Assoc., 1976, p. 24.

    Google Scholar 

  39. Kramsch, D. M. Role of connective tissue in atherosclerosis. Adv. Exp. Med. Biol 109: 155–194, 1978.

    PubMed  CAS  Google Scholar 

  40. Fleisch, H.; Felix, R. Diphosphonates. Calcif. Tissue Res. Int 27: 91–94, 1979.

    Article  CAS  Google Scholar 

  41. Frijlink, W. B.; TeVelde, J.; Bijvoet, O. L. M.; Heynen, G. Treatment of Paget’s disease with (3-amino-l- hydroxypropylidene)-1,1 -biphosphonate (APD). Lancet 1: 799–803, 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Kramsch, D.M. (1985). Prevention of Arterial Calcium Deposition with Diphosphonates and Calcium Entry Blockers. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_75

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_75

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics