Skip to main content

Synthesis of Ceramic Powders and Surface Films From Laser Heated Gases

  • Chapter
Innovations in Materials Processing

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((SAMC,volume 30))

  • 200 Accesses

Abstract

Two new processes have been developed that are based on laser heated gases. Both permit unusually precise levels of process control and thereby materials having superior properties.

The powder process yields Si, Si3N4 and SiC powders that are uniform in size, non-agglomerated, small diameter, spherically shaped and high purity. Manufacturing cost analyses show that sub- micron powders can be made with an energy cost of approximately 2 kWhr/kg and a dollar cost of 2–3.30 $/kg exclusive of the costs of feed materials. This type of process should be capable of producing technically superior, lower cost submicron powders than existing processes.

The laser induced chemical vapor deposition process (LICVD) causes reactant gases to be heated by absorbing IR light from a laser beam that passes parallel to the substrate surface. Laser heating permits independent control of gas and substrate temperatures while operating in a conventional thermally activated CVD mode. For hydrogenated amorphous silicon films, this is particularly important because deposition rates are determined by the high gas temperatures and film properties by the low substrate temperatures. Spin density, hydrogen content, electrical conductivity and mobility gap properties show the LICVD process capable of producing very high quality films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, R. A. Marra, “Sinterable Ceramic Powders from Laser Driven Reactions; Part I: Process Description and Modeling”, J. Am. Ceram. Soc., 65, 7: 324–30 (1982).

    Article  CAS  Google Scholar 

  2. W. R. Cannon, S. C. Danforth, J. S. Haggerty, and R. A. Marra, “Sinterable Ceramic Powders from Laser Driven Reactions; Part II: Powder Characteristics and Process Variables”, J. Am. Ceram. Soc., 65, 7: 330–5 (1982).

    Article  CAS  Google Scholar 

  3. T. R. Gattuso, M.. Meunier, D. Adler, and J. S. Haggerty, “IR Laser-Induced Deposition of Thin Films”, in Laser Diagnostics and Photochemical Processing for Semiconductor Devices, R. M. Osgood, S. R.J. Bruek, H. R. Schlossberg, Eds., North- Holland, 215–221, (1983).

    Google Scholar 

  4. E. Barringer, N. Jubb, B. Fegley, R. L. Pober and H. K. Bowen, “Processing Monosized Powders”, Int. Conf. on Ultra-structure Processing of Ceramics, Glasses and Composites, Eds. L. L. Hench and D. R. Ulrich, Wiely & Sons, New York (1983).

    Google Scholar 

  5. E. A. Barringer and H. K. Bowen, “Formation, Packing, and Sintering of Monodisperse Ti02 Powders”, J. Am. Ceram. Soc., 65, 12:C199–C210.

    Google Scholar 

  6. M. Hirose, “Physical Properties of Amorphous CVD Silicon”, J. de Physique, C4: 705–14 (1981).

    Google Scholar 

  7. W. Paul and D. Anderson, “Properties of Amorphous Hydrogenated Silicon with Special Emphasis on Preparation by Sputtering”, Sol. En. Mat., 5: 229–316 (1981).

    Article  CAS  Google Scholar 

  8. H. Fritzsche, “Characterization of Glow-Discharge Deposited a-Si:H”, Sol. En. Mat., 3: 447–501 (1980).

    Article  CAS  Google Scholar 

  9. J. H. Flint, “Powder Temperature in Laser Driven Reactions”, M. S. Thesis, M.I.T., February 1982.

    Google Scholar 

  10. R. A. Marra, “Homogeneous Nucleation and Growth of Silicon Powder from Laser Heated Gas Phase Reactants”, Ph.D. Thesis, M.I.T., February 1983.

    Google Scholar 

  11. M. Meunier, T. R. Gattuso, D. Adler, and J. S. Haggerty, “Hydrogenated Amorphous Silicon Produced by Laser Induced Chemical Vapor Deposition of Silane”, Appl. Phys. Lett., 43: 273 (1983).

    Article  CAS  Google Scholar 

  12. J. S. Haggerty and W. R. Cannon, “Sinterable Powders from Laser Driven Reactions”, MIT-EL 79-047, ARPA Order No. 3449, Dept. of Navy, Office of Naval Research, Arlington, VA., Contract No. N00014-77-C-0581, July 1979.

    Google Scholar 

  13. G. Greskovich, and J. H. Rosolowski, “Sintering of Covalent Solids”, J. Am. Ceram. Soc., 59: 285–8 (1976).

    Article  Google Scholar 

  14. A. D’Slessio, A. Dilorenzo, A. F. Sarofim, F. Beretta, S. Masi, and C. Venitozzi, “Soot Formation in Methane-Oxygen Flames”, Fifteenth Symposium (International) on Combustion 1427, (1975), The Combustion Institute, Pittsburgh, PA.

    Google Scholar 

  15. J. S. Haggerty, “Sinterable Powders from Laser Reactions”, MIT-EL 82-002, Final Report N00014-77-C-0581, September 1981.

    Google Scholar 

  16. Y. Suyama, R. A. Marra, J. S. Haggerty, and H. K. Bowen, “Synthesis of Ultrafine SiC Powders by Laser Driven Gas Phase Reactions”. Submitted for publication to the J. Am. Ceram. Soc., October 1982.

    Google Scholar 

  17. S. Mizuta, W. R. Cannon, A. Bleier, and J. S. Haggerty, “Wetting and Dispersion of Silicon Powder Without Deflocculants”, Am. Ceram. Soc. Bull., 61: 872–5 (1982).

    CAS  Google Scholar 

  18. S. C. Danforth, (Rutgers University, NJ), and M. Dahlen, (Volvo,Sweden), unpublished results.

    Google Scholar 

  19. G. Garvey, M.I.T., unpublished results.

    Google Scholar 

  20. R. S. Aries, and R. D. Newton, Chemical Engineering Cost Estimation, Chemonomics, Inc., N.Y., April (1951).

    Google Scholar 

  21. R. H. Baney, Dow Corning, private communication.

    Google Scholar 

  22. F. Chambers, Standard Oil Co. (Indiana), private communication.

    Google Scholar 

  23. P. Orinsnshky, Union Carbide Co., private communication.

    Google Scholar 

  24. R. Cannon, M.I.T., (Berkeley University, CA), private communication.

    Google Scholar 

  25. “Comminution and Energy Consumption”, National Materials Advisory Board (NAS-NAE), PB81-225708, May 1981.

    Google Scholar 

  26. Y. Hamakawa, “Recent Advances in Amorphous Silicon Solar Cells” Solar Energy Materials, 8: 101 (1982).

    Article  CAS  Google Scholar 

  27. P. G. LeComber, A. J. Snell, K. D. Mackenzie and W. E. Spear, “Applications of a-Si Field Effect Transistors in Liquid Crystal Displays and in Intrigated Logic Circuits”, J. de Physique, C4: 423–32 (1981).

    Google Scholar 

  28. B. A. Scott, R. M. Placenik, and E. E. Simonyi, “Low Defect Density Amorphous Hydrogenated Silicon Prepared by Homogeneous Chemical Vapor Deposition”, Appl. Phys. Lett., 39: 73 (1981).

    Article  CAS  Google Scholar 

  29. R. Bilenchi, I. Gianinoni, M. Musci and R. Murri, “Laser Induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon”,Laser Diagnostics and Photochemical Processing for Semiconductor Devices, R. M. Osgood, S. R. J. Brueck, H. R. Schlossberg, Eds., North-Holland, 199–205 (1983).

    Google Scholar 

  30. M. Meunier, J. H. Flint, D. Adler and J. S. Haggerty, “Laser Induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon”, Elect. Mat. Conf., Burlington, Vermont (1983).

    Google Scholar 

  31. M. Meunier, J. H. Flint, D. Adler and J. S. Haggerty, “Hydrogenated Amorphous Silicon Produced by Laser Induced Chemical Vapor Deposition of Silane” Proceedings of the 10th International Conference on Amorphous and Liquid Semiconductors, Tokyo, Japan, August 22–26, 1983.

    Google Scholar 

  32. C. G. Newman, H. E. O’Neal, M. A. Ring, F. Leska and N. Shipley “Kinetics and Mechanism of the Silane Decomposition”, Int. J. Chem. Kinetics, XI 1167 (1979).

    Article  Google Scholar 

  33. P. Hey and B. 0. Seraphin, “The Role of Hydrogen in Amorphous Silicon Films Deposited by the Pyrolytic Decomposition of Silane”, Sol. En. Mat., 8: 215–30 (1982).

    Article  CAS  Google Scholar 

  34. H. Fritzsche, “Characterization of Glow-Discharge Deposited a-Si:H”, Sol. En. Mat., 3 447–501, (1980).

    Article  CAS  Google Scholar 

  35. B. A. Scott, J. A. Reimer, R. M. Placenik, E. E. Simonyi and W. Reuter, “Low Defect Density Amorphous Hydrogenated Silicon Prepared by Homogeneous Chemical Vapor Deposition”, Appl. Phys. Lett., 40: 973 (1982).

    Article  CAS  Google Scholar 

  36. J. Tauc., “Optical Properties of Non-Crystalline Solids” in Optical Properties of Solids, Ed. F. Abeles, North-Holland, Amsterdam, p. 227–313, (1970).

    Google Scholar 

  37. C. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens and B. Brooks, “Optical Characterization of Amorphous Silicon Hydride Films” in Solar Cells, 2:227–243 (1980).

    Article  CAS  Google Scholar 

  38. N. F. Mott, and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd Ed., Clarendon Press, Oxford, (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Haggerty, J.S. (1985). Synthesis of Ceramic Powders and Surface Films From Laser Heated Gases. In: Bruggeman, G., Weiss, V. (eds) Innovations in Materials Processing. Sagamore Army Materials Research Conference Proceedings, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2411-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2411-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9469-6

  • Online ISBN: 978-1-4613-2411-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics