Skip to main content

Cloned DNA as a Substrate of Bacterial Recombination System

  • Chapter
Recombinant DNA Research and Viruses

Part of the book series: Developments in Molecular Virology ((DMVI,volume 5))

  • 72 Accesses

Abstract

Once a DNA fragment is cloned in a bacterial plasmid, it becomes an object for all the bacterial systems that control plasmid replication, maintenance, gene expression and recombination. While the first systems ensure faithful amplification of the cloned DNA, and if applicable, its expression in the host bacteria, bacterial recombination systems may lead to duplications, deletions and rearrangements of cloned DNA fragments. Conservation of the nucleotide sequence during cloning procedure and during propagation of the chimera plasmids is an absolute requirement for any investigation of the structure and function of the cloned fragment at its place of origin. Measures must therefore be taken to minimize deletions and rearrangements of cloned DNA in the host bacteria. The nature of the elements which affect the integrity of cloned DNA is the scope of this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perricaudet, M., Fritsch, A., Pettersson, U., Philipson, L. and Tiollais, P. Science 196:208–210, 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Keshet, E. and Shaul, Y. Nature 289:83–85, 1981.

    Article  PubMed  CAS  Google Scholar 

  3. McClements, W.L., Enquist, L.W., Oskarsson, M., Sullivan, M. and Vande Woude, G.F. J. Virol. 35:488–497, 1980.

    PubMed  CAS  Google Scholar 

  4. Brutlag, D., Fry, K., Nelson, T. and Hang, P. Cell 10:509–519, 1977.

    Article  PubMed  CAS  Google Scholar 

  5. Case, S.T. Gene 20:169–176, 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen, A., Ram, D., Paiss, A. and Friedman, A. Contr. Microb. Immunol. 6:146–158, 1979.

    CAS  Google Scholar 

  7. Cohen, A., Ram, D., Halvorson, H.D. and Wensink, P.C. Gene 3:135–147, 1978.

    Article  PubMed  CAS  Google Scholar 

  8. Cramer, J.H., Farrelly, F.W., Barnitz, J.T. and Rownd, R.H., Mol. Gen. Genet. 148:233–24l, 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Collins, J., Cold Spring Harbor Symp. Quant. Biol. 45:409–416, 1980.

    Google Scholar 

  10. Jones, I.M., Primrose, S.B. and Ehrlich, D. Mol. Gen. Genet. 188: 486–489, 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Primrose, S.B. and Ehrlich, S.D. Plasmid 6:193–201, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Fishel, R.A., James, A.A., Kolodner, R. Nature 294:184–186, 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Laban, A. and Cohen, A. Mol. Gen. Genet. 184:200–207, 1981.

    PubMed  CAS  Google Scholar 

  14. Albertini, A.M., Hofer, M., Calos, M.P. and Miller, J. Cell 29: 319–328, 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Farabaugh, P.J., Schmeissner, U., Hofer, M. and Miller, J. J. Mol. Biol. 126:847–857, 1978.

    Article  CAS  Google Scholar 

  16. Clark, A.J. Annu. Rev. Genet. 7:67–86, 1973.

    Article  PubMed  CAS  Google Scholar 

  17. Holliday, R. Genetics 78:273–287, 1974.

    PubMed  CAS  Google Scholar 

  18. Dressier, D. and Potter, H. Ann. Rev. Biochem. 51:727–761, 1982.

    Article  Google Scholar 

  19. Radding, C.M. Ann. Rev. Genet. 16:405–437, 1982.

    Article  PubMed  CAS  Google Scholar 

  20. Radding, C.M. Cell 25, 3–4, 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Calos, M.P. and Miller, J.H. Cell 20:579–597, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Kleckner, N. Cell 11:ll-23, 1977.

    Article  Google Scholar 

  23. Ausubel, F.M. and Ruvkun, G.B. In: Microbiology - 1981 (Schlessinger, D. Ed.) Am. Soc. Microbiol. Washington, D.C pp. 124–127.

    Google Scholar 

  24. Maas, K.W., Maas, R., Mazaitis, A.J. In: Microbiology — 1981 (Schlessinger, D. Ed.) Am. Soc. Microbiol. Washington D.C. pp.133–136.

    Google Scholar 

  25. Cramer, J.H., Bhargava, M.M. and Halvorson, H.G. J. Molec. Biol. 21:11–20, 1972.

    Article  Google Scholar 

  26. Mizuuchi, K., Kemper, B., Hays, J. and Weisberg, R. Cell 29:357–365, 1982.

    Article  PubMed  CAS  Google Scholar 

  27. Kemper, B., Vepka, M.V., Jensch, F. and Fritz, H.J. J. Cellular Biochem. Supp. 7B, 71, 1983.

    Google Scholar 

  28. Cohen, A. and Laban, A. Mol. Gen. Genet. 189:471–474, 1983.

    Article  PubMed  CAS  Google Scholar 

  29. James, A.A., Morrison, P.T. and Kolodner, R., J. Mol. Biol. 160: 411–430, 1982.

    Article  PubMed  CAS  Google Scholar 

  30. Barbour, S.D., Nagaishi, H., Templin, A. and Clark, A.J., Proc. Natl. Acad. Sci. USA 67:128–135, 1970.

    Article  PubMed  CAS  Google Scholar 

  31. Horri, Z. and Clark, A.J. J. Mol. Biol. 80:327–344, 1973.

    Article  Google Scholar 

  32. Gillen, J.R., Willis, D.K. and Clark, A.J. J. Bacteriol. 145:521–532, 1981.

    PubMed  CAS  Google Scholar 

  33. Stahl, F.W. and Stahl, M.M. Genetics 86:715–725, 1977.

    PubMed  CAS  Google Scholar 

  34. Smith, G.R., Schultz, D.W. and Craseman, J.M. Cell 19:785–793, 1980.

    Article  PubMed  CAS  Google Scholar 

  35. Chang, A.C.Y. and Cohen, S.N. J. Bacteriol. 134:1141–1156, 1978.

    PubMed  CAS  Google Scholar 

  36. Johnson, A., Willets, N.S. Plasmid 4:292–304, 1980.

    Article  PubMed  CAS  Google Scholar 

  37. Padan, E., Arbel, T., Rimon, A., Bar-Shira, A. and Cohen, A. J. Biol. Chem. 258:5666–5673, 1983.

    CAS  Google Scholar 

  38. Teather, R.M., Müller-Hi11, B., Abrutsch, U., Aichele, G. and Overath, P. Molec. Gen. Genet. 159:239–248, 1978.

    Article  PubMed  CAS  Google Scholar 

  39. Lilley, D.M.J. Nature 292:380–382, 1981.

    Article  PubMed  CAS  Google Scholar 

  40. Thomas, C.A., jr., Pyeritz, R.E., Wilson, D.A., Dancis, B.M. Lee, L.S., Bick, M.D., Huang, H.L. and Zimm, B.H. Cold Spring Harbor Symp. Quant. Biol. 38:353–370, 1974.

    PubMed  CAS  Google Scholar 

  41. Spear, P.G. and Roizman, B. In: DNA tumor viruses. (Tooze, J. ed.) Cold Spring Harbor U.S.A. 1980, pp. 615–746.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Cohen, A. (1985). Cloned DNA as a Substrate of Bacterial Recombination System. In: Becker, Y., Hadar, J. (eds) Recombinant DNA Research and Viruses. Developments in Molecular Virology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2565-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2565-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9611-9

  • Online ISBN: 978-1-4613-2565-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics