Skip to main content

Physostigmine Related Changes in Cerebrospinal Fluid Neurotransmitter Metabolites in Man

  • Chapter
Brain Acetylcholine and Neuropsychiatric Disease
  • 85 Accesses

Abstract

Administration of the acetylcholinesterase inhibitor physostigmine to man produces a range of behavioral changes that can be of therapeutic benefit to some patients with Huntington’s disease, tardive dyskinesia, mania and memory deficits (Aquilonius and Sjostrom, 1971; Janowsky et al, 1973; Klawans and Rubovits, 1974; Davis et al., 1976; 1978a; 1978b). The scope and complexity of the actions of physostigmine suggest that the neurochemical basis of these effects might extend beyond the ability of the drug to increase cholinergic activity. It is possible that some of the behavioral consequences of physostigmine result from the action of increased central cholinergic activity on other neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G. K., and Bunney, B. S., 1973, Central dopaminergic neurons: Neurophysiological identification and response to drugs, in “Frontiers in Catecholamine Research” ( E. Usdin, and S. Snyder, eds.), pp. 643–648, Pergamon Press, New York.

    Google Scholar 

  • Anden, N. E., 1974, Effect of oxotremorine and physostigmine on the turnover of dopamine in the corpus striatum and limbic system, J. Pharm. Pharmacol 26: 738.

    Article  PubMed  CAS  Google Scholar 

  • Anden, N. E., and Bedard, P., 1971, Influences of cholinergic mechanisms on the function and turnover of brain dopamine, J. Pharm. Pharmacol 23: 460.

    Article  PubMed  CAS  Google Scholar 

  • Anden, N. E., and Stock, G., 1973, Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system, J. Pharm. Pharmacol 25: 346.

    Article  PubMed  CAS  Google Scholar 

  • Anfred, T., and Randrup, A., 1968, Cholinergic mechanisms in brain inhibiting amphetamine-induced stereotyped behavior, Acta Pharmacol Toxicol 26: 384.

    Article  Google Scholar 

  • Aquilonius, S. M., and Sjostrom, R., 1971, Cholinergic and dopaminergic mechanisms in Huntington’s chorea, Life Set 70: 405.

    Article  Google Scholar 

  • Baldessarini, R. J., and Tarsy, D., 1976, Mechanisms underlying tardive dyskinesia, in “The Basal Ganglia” (M. D. Yahr, ed.), pp. 433–446, Raven Press, New York.

    Google Scholar 

  • Bartholini, G., Stadler, H., and Lloyd, F. G., 1973, Cholinergic-dopaminergic interactions in the extrapyramidal system, Adv. Neurol 3: 233.

    CAS  Google Scholar 

  • Bartholini, G., Keller, H. H., and Pletscher, A., 1975, Drug-induced changes of dopamine turnover in striatum and limbic system of the rat, J. Pharm. Pharmacol 27: 439.

    Article  PubMed  CAS  Google Scholar 

  • Bartholini, G., Keller, H. H., and Pletscher, A., 1975, Drug-induced changes of dopamine turnover in striatum and limbic system of the rat, J. Pharm. Pharmacol 27: 439.

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar, S. P, 1973, Studies related to the cholinergic influence on the accumulation and disappearance of monoamines in the rat brain, Can. J. Physiol. Pharmacol 51: 893.

    Article  CAS  Google Scholar 

  • Bowers, M. B., and Roth, R. H., 1972, Interactions of atropine-like drugs with dopamine-containing neurones in rat brain, Br. J. Pharmacol 44: 301.

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Kehr, W., Lindquist, M., Magnusson, T., and Atack, C. U., 1972, Regulation of monoamine metabolism in the central nervous system, Pharmacol Rev. 24: 311.

    Google Scholar 

  • Cools, A. R., 1977, Two functionally and pharmacologically distinct dopamine receptors in the rat brain, in “Advances in Biochemical Psychopharmacology, Vol 16” ( E. Costa, and G. L. Gessa, eds.), pp. 215–225, Raven Press, New York.

    Google Scholar 

  • Cools, A. R., Honig, W. M. M., Pijnenburg, A. J. J., and van Rossom, J. M., 1976, The nucleus accumbens of rats and dopaminergic mechanisms regulating locomotor behavior, Neurosci. Lett. 3: 335.

    Article  PubMed  CAS  Google Scholar 

  • Corrodi, H., Fuxe, K., Hammer, W., et al, 1967, Oxotremorine and central monoamine neurones, Life Sci 6:2557.

    Article  PubMed  CAS  Google Scholar 

  • Corrodi, H., Fuxe, K., and Lidbrink, P., 1972, Interaction between cholinergic and catecholaminergic neurones in rat brain, Brain Res. 43: 397.

    Article  PubMed  CAS  Google Scholar 

  • Crossman, A. R., Walker, R. J., and Woodruff, G. N., 1974, Proceedings: Pharmacological studies on single neurones in the substantia nigra, Br. J. Pharmacol 57. 137 P.

    Google Scholar 

  • Davis, K. L., Hollister, L. E., Barchas, J. D., and Berger, P. A., 1976, Choline in tardive dyskinesia and Huntington’s disease, Life Sci. 19: 1507.

    Article  PubMed  CAS  Google Scholar 

  • Davis, K. L., Hollister, L. E., Goodwin, F. K., and Gordon, E. K., 1977, Neurotransmitter metabolites in the cerebrospinal fluid of man following physostigmine, Life Sci 21: 933.

    Article  PubMed  CAS  Google Scholar 

  • Davis, K. L., Berger, P. A., Hollister, L. E., and DeFraites, E. G., 1978a, Physostigmine in mania, Arch. Gen. Psychiatry 35(1): 119.

    Google Scholar 

  • Davis, K. L., Mohs, R., Tinklenberg, J. R., Pfefferbaum, A., Hollister, L. E., and Kopell, B. S., 1978b, Physostigmine: improvement of long-term memory processes in normal humans, Science 201: 4352.

    Google Scholar 

  • Davis, K. L., Hollister, L. E., and Tepper, J., 1978c, Cholinergic inhibition of methyl- phenidate induced stereotypy: oxotremorine,Psychopharmacology 56: 1.

    Article  PubMed  CAS  Google Scholar 

  • Davis, K. L., Hollister, L. E., Vento, A. L., and Simonton, S., 1978d, Choline chloride in methylphenidate- and apomorphine-induced stereotypy, Life Sci. 22: 2171.

    Article  PubMed  CAS  Google Scholar 

  • Feltz, P., 1971, Gamma-aminobutyric acid and a caudate-nigral inhibition, Can. J. Physiol. Pharmacol. 49: 1113.

    Article  PubMed  CAS  Google Scholar 

  • Giorguieff, M. F., Lefloch, M. L., Westfall, T. C., Glowinski, J., and Besson. M. J., 1976, Nicotinic effect of acetylcholine on the release of newly synthesized H dopamine in rat striatal slices and cat caudate nucleus, Brain Res. 106: 117.

    Article  PubMed  CAS  Google Scholar 

  • Groves, P. M., Wilson, C. J., Young, S. J., and Rebec, G. V., 1975, Self-inhibition by dopa-minergic neurons: an alternative to the “Normal Feedback Loop” hypothesis for the mode of action of certain psychotropic drugs, Science 190: 522.

    Article  PubMed  CAS  Google Scholar 

  • Janowsky, D. S., El-Yousef, M. K., Davis, J. M., and Sekerke, H. J., 1972, Cholinergic antagonism of methylphenidate-induced stereotyped behavior, Psychopharmacologia 27: 295.

    Article  CAS  Google Scholar 

  • Janowsky, D. S., El-Yousef, J. K., and Davis, J. M., 1973, Parasympathetic suppression of manic-symptoms by physostigmine, Arch. Gen. Psychiatry 28: 542.

    PubMed  CAS  Google Scholar 

  • Javoy, F., Agid, Y., Bouvet, D., et al., 1974, Changes in neostriatal dopamine metabolism after carbachol or atropine microinjections into the substantia nigra, Brain Res. 68: 253.

    Google Scholar 

  • Javoy, F., Agid, Y., and Glowinski, J., 1975, Oxotremorine and atropine-induced changes of dopamine metabolism in the rat brain, J. Pharm. Pharmacol. 27: 611.

    Article  Google Scholar 

  • Karoum, F., Gillin, J. C., Wyatt, R. J., and Costa, E., 1975, Mass fragmentography of nanogram quantities of biogenic amine metabolites in human cerebrospinal fluid and whole rat brain, Biomed. Mass. Spectrom. 2: 183.

    Article  CAS  Google Scholar 

  • Kessler, J. A., Gordon, E. K., Reid, J. L., and Kopin, I. J., 1976, Homovanillic acid and 3-methoxy, 4-hydroxyphenylethyleneglycol production by the monkey spinal cord, J. Neurochem. 26: 1057.

    Article  PubMed  CAS  Google Scholar 

  • Klawans, H. L., 1970, A pharmacologic analysis of Huntington’s chorea, Eur. Neurol 4: 148.

    Article  PubMed  Google Scholar 

  • Klawans, H. L., and Rubovits, R., 1974, Effect of cholinergic and anticholinergic agents on tardive dyskinesia, J. Neurol Neurosurg. Psychiatry 37: 941.

    Article  PubMed  CAS  Google Scholar 

  • Laverty, R., and Sharman, D. F., 1965, Modification by drugs of the metabolism of 3, 4-dihydroxyphenylethylamine, noradrenaline, and 5-hydroxytryptamine in the brain, Br. J; Pharmacol 24: 159.

    Google Scholar 

  • McGeer, P. A., Fibiger, H. C., Haitoris, T., Singh, V. K., McGeer, E. G., and Maler, L., 1974, Biochemical neuroanatomy of the basal ganglia, Adv. Behav. Biol. 10: 21.

    Google Scholar 

  • McNair, J. L., Sutin, J., and Tsubokawa, T., 1972, Suppression of cell firing in the substantia nigra by caudate nucleus stimulation, Exp. Neurol 37: 395.

    Article  PubMed  CAS  Google Scholar 

  • Murrin, L. C., and Roth, R. H., 1976, Dopaminergic neurons: reversal of effects elicited by gamma-butyrolactone by stimulation of the nigra-neostriatal pathway, Naunyn Schmiedebergs Arch. Pharmacol 295: 15.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, W. J. H., and Mehler, W. R., 1966, Projections of the lentiform nucleus in the monkey, Brain Res. 1: 3.

    Article  PubMed  CAS  Google Scholar 

  • Niimi, K., Ikeda, T., Kawamura, S., and Inoshita, H., 1970, Efferent projections of the head of the caudate nucleus in the edit, Brain Res. 27: 327.

    Article  Google Scholar 

  • Nose, T., and Takemoto, H., 1974, Effect of oxotremorine on homovanillic acid concen-tration in striatum of the rat. Eur. J. Pharmacol 25: 51.

    Article  PubMed  CAS  Google Scholar 

  • Okada, V., and Hassler, R., 1973, Uptake and release of 7-aminobutyric acid (GABA)in slices of substantia nigra of rat, Brain Res. 49: 214.

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe, R., Shapman, D. R., and Vogt, M., 1970, Effect of drugs used in psychoses on cerebral dopamine metabolism, Br. J. Pharmacol 38: 281.

    Google Scholar 

  • Papeschi, R., Sourkes, T. L., Piorier, L. J., and Boucher, R. L., 1971, On the intracerebral origin of homovanillic acid of the cerebrospinal fluid of experimental animals, Brain Res. 28: 521.

    Article  Google Scholar 

  • Perez-Cruet, J., Gessa, G. L., Taliamonte, A., et al., 1971, Evidence for a balance in the basal ganglia between cholinergic and dopaminergic activity, Fed. Proc. 30:216.

    Google Scholar 

  • Portig, P. J., and Vost, M., 1969, Release into the cerebral ventricles of substances with possible transmitter function in the caudate nucleus, J. Physiol (Lond)204: 681.

    Google Scholar 

  • Post, R. M., Goodwin, R. K., Gordon, E., and Watkin, D., 1973, Amine metabolites in human cerebrospinal fluid: effects of cord transection and spinal fluid block, Science 179: 891.

    Article  Google Scholar 

  • Precht, W., and Yoshida, M., 1971, Blockage of caudate-evoked inhibition of neurons in the substantia nigra by Picrotoxin, Brain Res. 32: 229.

    Article  PubMed  CAS  Google Scholar 

  • Roffler-Tarlov, S., Sharman, D.F., and Tegerdine, P., 1971, 3-4-dihydroxyphenylacetic acid in the mouse striatum: a reflection of intra- and extra-neuronal metabolism of dopamine? J. Pharmacol 42: 343.

    Google Scholar 

  • Roth, R. H., Walters, J. R., and Aghajanian, G. K., 1973, Effect of impulse flow on the release and synthesis of dopamine in the rat striatum, in “Frontiers in Catecholamine Research” ( E. Usdin, and S.H. Snyder, eds.), pp. 567–574, Pergamon Press, New York.

    Google Scholar 

  • Roth, R. H., Murrin, L. C., and Walter, J. R., 1976, Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylace tic acid, Eur. J. Pharmacol 36: 163.

    Article  PubMed  CAS  Google Scholar 

  • Roth, R. H., Salzman, P. M., and Nowycky, M. C., 1978, Impulse flow and short-term regulation of transmitter biosynthesis in central catecholaminergic neurons, in “Psychopharmacology: A Generation of Progress” (M.A. Lipton, A. Dimascio, and K.F. Killam, eds.), pp. 185–198, Raven Press, New York.

    Google Scholar 

  • Swahn, C. G., Sandgarde, B., Wiesel, F. A., and Sedvall, G., 1976, Simultaneous determination of the three major monoamine metabolites in brain tissue and body fluids by a mass fragmentographic method, Psychopharmacology 48: 141.

    Article  Google Scholar 

  • Szabo, J., 1962, Topical distribution of the striatal efferents in the monkey, Exp. Neurol 5: 21.

    Article  Google Scholar 

  • Szabo, J., 1970, Projections from the body of the caudate nucleus in the rhesus monkey, Exp. Neurol 27: 1.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, J., 1972, The course and distribution of efferents from the tail of the caudate nucleus in the monkey, Exp. Neurol 57: 562.

    Google Scholar 

  • Voneida, T. J., 1960, An experimental study in the course and destination of fibers arising in the head of caudate nucleus in the cat and monkey, J. Comp. Neurol 115: 15.

    Article  Google Scholar 

  • Walters, J. R., 1972, Effect of gamma hydroxybutyrate on dopamine and dopamine metabolites in the rat striatum, Biochem. Pharmacol 21: 2 111.

    Google Scholar 

  • Westernick, B. H. C., and Korf, J., 1975, Influence of drugs on striatal and limbic homovanillic acid concentration in the rat brain, Eur. J. Pharmacol 33: 31.

    Article  Google Scholar 

  • Yoshida, M., and Precht, W., 1971, Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers, Brain Res. 32: 215.

    Article  Google Scholar 

  • Yoshida, M., Rabin, A., and Anderson, M., 1971, Two types of monosynaptic inhibition of pallidal neurons produced by stimulation of the diencephalon and substantia nigra, Brain Res. 30: 235.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Davis, K.L., Faull, K.F., Hollister, L.E., Barchas, J.D., Berger, P.A. (1979). Physostigmine Related Changes in Cerebrospinal Fluid Neurotransmitter Metabolites in Man. In: Davis, K.L., Berger, P.A. (eds) Brain Acetylcholine and Neuropsychiatric Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2934-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2934-3_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2936-7

  • Online ISBN: 978-1-4613-2934-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics