Skip to main content

Overvoltage and Solid State Kinetics of Reactions at Biological Interfaces. Cytochrome Oxidase, Photobiology, and Cation Transport. Therapy of Heart Disease and Cancer

  • Chapter
Bioelectrochemistry

Abstract

In the past, biological reactions have usually been assumed to be rate-limited by collision of the reacting molecules in solution. However, it is well known that all cells contain solids (particles and membranes). It therefore seems unreasonable to limit oneself to solution processes. One ought to consider the possibility that some biological processes may occur in, or at, the surfaces of solids. Starting from the hypothesis that a biological reaction may be rate-limited by ohmic conduction of electrons across an enzyme particle, or by the Tafel overvoltage equation for conduction across a liquid-solid interface (like an electrode surface), equations for reduction of substrate as a function of time have been derived. These kinetic equations are different from those of mass action theory, and describe the observed behaviour of various biological reactions such as cytochrome oxidase and various photobiological processes, all of which occur at the surfaces of particles or membranes. The correctness of this approach is supported measurements of electron mobilities in some of these biological solids by new techniques (microwave Hall effect and pulsed electron beam) and by the measurement of a low semi-conduction activation energy in cytochrome oxidase. The use of electrode overvoltage theory has also led to a correct prediction of the kinetics of non-equilibrium ion conduction across the cell surface. One then regards the cell surface not as a bag containing a solution, but rather as the surface of a mass of structured or semicrystalline cell water, in which associated or free alkali cations are analogous to valence and conduction electrons respectively in a semiconductor solid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.W. Cope, Bull. Math. Biophys, 25, 165 (1963)

    Article  CAS  Google Scholar 

  2. F.W. Cope, Arch. Biochem. Biophys. 103, 352 (1963)

    Article  CAS  Google Scholar 

  3. F.W. Cope, J. Chem. Phys. 40, 2653 (1964)

    Article  CAS  Google Scholar 

  4. F.W. Cope, Bull. Math. Biophys. 27, 237 (1965)

    Article  CAS  Google Scholar 

  5. F.W. Cope, in “Oxidases and Related Redox Systems”, T.E. King, H.S. Mason and M. Morrison, eds., Wiley, New York (1965)

    Google Scholar 

  6. F.W. Cope and K.D. Straub, Bull. Math. Biophys. 31, 761

    Google Scholar 

  7. F.W. Cope, Adv. Biol. Med. Physics, 13, 1 (1970)

    CAS  Google Scholar 

  8. L. Smith and H. Conrad, Arch. Biochem. Biophys. 63, 403 (1956)

    Article  CAS  Google Scholar 

  9. K. Minnaert, Biochem. Biophys. Acta, 50, 23 (1961)

    Article  CAS  Google Scholar 

  10. J. Bettlestone, Arch. Biochem. Biophys. 89, 35 (1960)

    Article  Google Scholar 

  11. K.D. Straub, “Semiconduction in Certain Proteins”, Ph.D. Thesis, Biochemistry Department, Duke University, Durham, North Carolina (1967)

    Google Scholar 

  12. J. Tafel, Z. Phys. Chem. 50, 641 (1905)

    CAS  Google Scholar 

  13. G. Kortüm and J.O. Bockris, “Textbook of Electrochemistry”, Vol. 2., Elsevier, Amsterdam (1951)

    Google Scholar 

  14. J.O. Bockris, in “Modern Aspects of Electrochemistry”, J.O. Bockris and B.E. Conway eds., Butterworths, London (1954)

    Google Scholar 

  15. D.R. Turner, in “The Electrochemistry of Semiconductors” (ed. by P.J. Homes, ed., Academic Press, London (1962)

    Google Scholar 

  16. F.W. Cope, Bull. Math. Biophys. 33, 39 (1971)

    Article  CAS  Google Scholar 

  17. S.Z. Roginsky and J. Zeldovich, Acta Physiocochem. USSR, 1, 554 (1934)

    Google Scholar 

  18. S. Elovich, J. Phys. Chem. USSR, 13, 1761 (1939)

    CAS  Google Scholar 

  19. F.W. Cope, Proc. Nat. Acad. Sci. (USA), 51, 809 (1964)

    Article  CAS  Google Scholar 

  20. A.V. Vannikov and L.I. Boguslavskii, Biofizika, 14, 421 (1969)

    CAS  Google Scholar 

  21. L.I. Boguslavskii and A. V. Vannikov, “Organic Semiconductors and Biopolymers”, Plenum, New York (1970)

    Google Scholar 

  22. E.M. Trukhan, Pribory i Tekhnika Eksperimenta (Experimental Instruments and Techniques), 4, pages 198–203(1965)

    Google Scholar 

  23. E.M. Trukhan, Biofizika, 11, 412 (1966)

    Google Scholar 

  24. D.D. Eley and R. Pethig, Discussions of Faraday Society, 51, 164 (1971)

    Article  CAS  Google Scholar 

  25. D.D. Eley and R. Pethig, J. Bioenergetics, 2, 39 (1972)

    Article  Google Scholar 

  26. E.M. Trukhan, N.F. Perewoschikof and M.A. Ostrowski, Biofizika, 15, 1052 (1970)

    CAS  Google Scholar 

  27. D.D. Eley, R.J. Meyer and R. Pethig, J. Bioenergetics, 3 271,

    Google Scholar 

  28. D.D. Eley, R.J. Meyer and R. Pethig, J. Bioenergetics, 4, 389

    Google Scholar 

  29. S.Y. Chai and P.O. Vogelhut, J. Appl. Physics, 38, 613 (1967)

    Article  CAS  Google Scholar 

  30. R. Pethig, J. Biol. Physics, 1, 193 (1973)

    Article  CAS  Google Scholar 

  31. A. Szent-Györgyi, Science, 93, 609 (1941)

    Article  Google Scholar 

  32. F.W. Cope, Bull. Math. Biophys. 33, 579 (1971)

    Article  CAS  Google Scholar 

  33. F.W. Cope, J. Biol. Physics, 3, 1 (1975)

    Article  CAS  Google Scholar 

  34. F.W. Cope, Bull. Math. Biophys. 27, 99 (1965)

    Article  CAS  Google Scholar 

  35. F.W. Cope, Bull. Math. Biophys. 29, 691 (1967)

    Article  CAS  Google Scholar 

  36. G.N. Ling, Amer. J. Phys. Med. 34, 89 (1955)

    CAS  Google Scholar 

  37. G.N. Ling, Internat. Rev. Cytol. 26, 1 (1961)

    Article  Google Scholar 

  38. L. Minkoff and R. Damadian, Biophys. J. 13, 167 (1973)

    Article  CAS  Google Scholar 

  39. 3R. Damadian, Ann. N.Y. Acad. Sci. 204, 249 (1973)

    Article  Google Scholar 

  40. R. Damadian, CRC Crit. Rev. Microbiol, pages 377–422 (March 1973)

    Google Scholar 

  41. C.B. Bratton, A.L. Hopkins and J.W. Weinberg, Science, 147, 738

    Google Scholar 

  42. F.W. Cope, Biophys. J. 9, 303, (1969)

    Article  CAS  Google Scholar 

  43. C.F. Hazelwood, B.L. Nichols and N.F. Chamberlain, Nature, 222, 747 (1969)

    Article  Google Scholar 

  44. F.W. Cope, Nature, New Biology, 237, 215 (1972)

    Article  CAS  Google Scholar 

  45. P.S. Belton, R.R. Jackson and K.J. Packer, Biochem. Biophys. Acta. 286, 16 (1972)

    Article  CAS  Google Scholar 

  46. C.F. Hazelwood, D.C. Chang, B.L. Nichols and D.E. Woessner, Biophys. J. 14, 583 (1974)

    Article  Google Scholar 

  47. F.W. Cope, Biophys. J. 10, 843 (1970)

    Article  CAS  Google Scholar 

  48. R. Damadian and F.W. Cope, Physiol. Chem. and Physics, 5, 511

    Google Scholar 

  49. F.W. Cope and R. Damadain, Physiol. Chem. and Physics, 6, 17 (1974)

    CAS  Google Scholar 

  50. R. Damadian and F.W. Cope, Physiol. Chem. and Physics, 6, 309 (1974)

    CAS  Google Scholar 

  51. M.J. Kushmerick and R.J. Podolsky, Science, 166, 1297 (1966)

    Article  Google Scholar 

  52. G.N. Ling and M.M. Ochsenfeld, Science, 181, 78 (1973)

    Article  CAS  Google Scholar 

  53. G.N. Ling, “A Physical Theory of the Living State1”, Blaisdell, New York (1960)

    Google Scholar 

  54. R. Damadian, Biophys. J. 11, 773 (1973)

    Article  Google Scholar 

  55. G.N. Ling, Ann. N.Y. Acad. Sci. 204, 6 (1973)

    Article  CAS  Google Scholar 

  56. R. Damadian, Ann. N.Y. Acad. Sci. 204, 211 (1973)

    Article  CAS  Google Scholar 

  57. A.S. Troshin, “Problems of Cell Permeability”, Pergamon, London (1966)

    Google Scholar 

  58. G.N. Ling, J. Gen. Physiol. 49, 819 (1966)

    Article  CAS  Google Scholar 

  59. F.W. Cope, Bull. Math. Biophys. 27, 99 (1965)

    Article  CAS  Google Scholar 

  60. F.W. Cope, Bull. Math. Biophys. 29, 691 (1967)

    Article  CAS  Google Scholar 

  61. G.N. Ling, in. Ling, in “Phosphorus Metabolism” (Vol. 2 ), W.D. McElroy and B. Glass, eds., John Hopkins, Baltimore (1952)

    Google Scholar 

  62. D.N. Nasonov, “Local Reaction of Protoplasm and Gradual Excitation”, Nat. Sci. Foundation, Washington, D.C. (1962)

    Google Scholar 

  63. G.N. Ling and G. Bohr, Biophys. J. 10, 519 (1970)

    Article  CAS  Google Scholar 

  64. A.S. Troshin, “Problems of Cell Permeability”, Pergamon, London (1966)

    Google Scholar 

  65. F.W. Cope, Proc. Nat. Acad. Sci. 54, 225 (1965)

    Article  CAS  Google Scholar 

  66. F.W. Cope, J. Gen. Physiol., 50, 1353 (1967)

    Article  CAS  Google Scholar 

  67. L. Minkoff and R. Damadian, Physiol. Chem. and Physics, 81, 349 (1976)

    Google Scholar 

  68. F.W. Cope, Bull. Math. Biophys. 31, 529 (1969)

    Article  CAS  Google Scholar 

  69. A.L. Hodgkin and A.L. Huxley, J. Physiol. 117, 500 (1952)

    CAS  Google Scholar 

  70. F.W. Cope, Physiol. Chem. and Physics, 8, 519 (1976)

    CAS  Google Scholar 

  71. G. Karreman, Bull. Math. Biophys. 33, 483 (1971)

    Article  CAS  Google Scholar 

  72. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  CAS  Google Scholar 

  73. M. Avrami, J. Chem. Phys. 8, 212 (1940)

    Article  CAS  Google Scholar 

  74. M. Avrami, J. Chem. Phys. 9, 177 (1941)

    Article  CAS  Google Scholar 

  75. W.A. Johnson and R.F. Mehl, Trans. Am. Inst. Mining (Metall.) Eng. 135, 416 (1939)

    Google Scholar 

  76. J.W. Christian, “The Theory of Transformations in Metals and Alloys”, Pergamon, London (1975)

    Google Scholar 

  77. V. Raghavan and M. Cohen, in. Cohen, in “Treatise on Solid State Chemistry”, Vol. 5, N.B. Hannay, ed., Plenum, New York (1975)

    Google Scholar 

  78. P. Duhaj, D. Barancok and A. Ondrejka, J. Non-Cryst. Solids, 21, 411 (1976)

    Article  CAS  Google Scholar 

  79. F.W. Cope, Physiol. Chem. and Physics, 9, 155 (1977)

    CAS  Google Scholar 

  80. F.W. Cope, Physiol. Chem. and Physics, 9, 383 (1977)

    CAS  Google Scholar 

  81. F.W. Cope, Physiol. Chem. and Physics, 9, 443 (1977)

    CAS  Google Scholar 

  82. R. Damadian, Science, 171, 1151 (1971)

    Article  CAS  Google Scholar 

  83. R. Damadian, K. Zaner, D. Hor, and T. DiMaio, Physiol. Chem. and Physics, 5, 381 (1973)

    CAS  Google Scholar 

  84. R. Damadian, K. Zaner, D. Hor, and T. DiMaio, Proc. Nat. Acad. Sci. (USA), 71, 1471 (1974)

    Article  CAS  Google Scholar 

  85. R. Damadian, U.S. Patent, 3,789,832, filed March 17, 1972

    Google Scholar 

  86. R. Damadian, L. Minkoff, M. Goldsmith, A. Stanford and J. Koutcher, Physical. Chem. and Physics, 8, 61 (1976)

    CAS  Google Scholar 

  87. R. Damadian, L. Minkoff, M. Goldsmith and J.A. Koutcher, Naturwissenschaften, 65, 250 (1978)

    Article  CAS  Google Scholar 

  88. R. Damadian, L. Minkoff and M. Goldsmith, Physiol. Chem. and Physics, 10, 561 (1978)

    CAS  Google Scholar 

  89. R. Damadian, M. Goldsmith and L. Minkoff, Physiol. Chem. and Physics, 10, 285 (1978)

    CAS  Google Scholar 

  90. F.W. Cope, Physiol. Chem. and Physics, 9, 547 (1977)

    CAS  Google Scholar 

  91. F.W. Cope, Physiol. Chem. and Physics 11, 93 (1979)

    CAS  Google Scholar 

  92. M. Gerson, Physiol. Chem. and Physics, 10, 449 (1978)

    CAS  Google Scholar 

  93. F.W. Cope, Physiol. Chem. and Physics, 10, 465 (1978)

    CAS  Google Scholar 

  94. L. Naftalin, Physiol. Chem. and Physics, 11, 95 (1979)

    CAS  Google Scholar 

  95. N. Chalazonitis, Photochem. Photobiol. 3, 539 (1964)

    Article  CAS  Google Scholar 

  96. F.W. Cope, Proc. Nat. Acad. Sci. (USA), 61, 905 (1968)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Cope, F.W. (1980). Overvoltage and Solid State Kinetics of Reactions at Biological Interfaces. Cytochrome Oxidase, Photobiology, and Cation Transport. Therapy of Heart Disease and Cancer. In: Keyzer, H., Gutmann, F. (eds) Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3117-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3117-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3119-3

  • Online ISBN: 978-1-4613-3117-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics