Skip to main content

Quantum Model of the Coherent Diffraction Experiment: Recent Generalizations and Applications

  • Chapter
Electron Distributions and the Chemical Bond

Abstract

The scattering power for the X-ray crystallographic experiment is the Fourier transform of the electron density. This can be cast into a quantum formalism by representing the density as the elements of the 1-electron density matrix. The condition that a 1-density matrix come from a wave function is ensured by requiring that its eigen-values fall in the range between zero and one. A particular case we have studied because it is a most important first approximation is that of a single determinant of molecular orbitals. This case is completely characterized by idempotency of the density matrix. Measured X-ray intensities may be used to fix the elements of the density matrix. Specific applications of this idea are presented. In particular we consider (1) open shell systems and (2) Bloch orbital representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.H. Stout and L.H. Jensen, “X-ray Structure Determination,” MacMillan, NY (1968).

    Google Scholar 

  2. E.R. Davidson, “Reduced Density Matrices in Quantum Chemistry,” Academic Press, NY (1976).

    Google Scholar 

  3. R.F. Stewart, J. Chem. Phys. 58:1668 (1973).

    Article  CAS  Google Scholar 

  4. W.L. Clinton, C.A. Frishberg, L.J. Massa, and P.A. Oldfield, Int. J. Quantum Chem. Symp. 7:505 (1973).

    Article  Google Scholar 

  5. C.A. Frishberg and L.J. Massa, submitted to Phys. Rev.

    Google Scholar 

  6. S. Larsson, Phys. Rev. 169:49 (1968).

    Article  CAS  Google Scholar 

  7. A.W. Weiss, Phys. Rev. 122:1326 (1961).

    Article  Google Scholar 

  8. R. Benesch and V.H. Smith, Jr., Acta Cryst. A26:586 (1970), J. Chem. Phys. 53:1466 (1970).

    Google Scholar 

  9. E. Clementi, IBM J. Res. Develop. 9 (1965).

    Google Scholar 

  10. P.O. Löwdin, Phys. Rev. 97:1490 (1955).

    Article  Google Scholar 

  11. W.L. Clinton, J. Nakhleh, and F. Wunderlich, Phys. Rev. 177:1 (1969).

    Article  CAS  Google Scholar 

  12. C. Möller and M.S. Plesset, Phys. Rev. 46:618 (1934).

    Article  Google Scholar 

  13. W. Kutzelnigg and V.H. Smith, Jr., J. Chem. Phys. 42:2791 (1965).

    Article  CAS  Google Scholar 

  14. J. Goodisman and W.J. Klemperer, J. Chem. Phys. 38:721 (1963).

    Article  CAS  Google Scholar 

  15. I. Shavitt, in: “Modern Theoretical Chemistry”, vol. III, H.F. Schaefer III, ed., Plenum Press, NY (1976).

    Google Scholar 

  16. J.N. Varghese and R. Mason, Proc. R. Soc. Lond. A372:1 (1980)

    Google Scholar 

  17. F.L. Hirshfeld, Acta Cryst. A32:239 (1976).

    Google Scholar 

  18. P.O. Löwdin, Advances in Quantum Chem. 12:263 (1980).

    Article  Google Scholar 

  19. C.M. Quinn, “An Introduction to the Quantum Chemistry of Solids”, Clarendon Press, Oxford (1973).

    Google Scholar 

  20. M.J. Goldberg and L.J. Massa, submitted to Int. J. Quantum Chem.

    Google Scholar 

  21. T.L. Gilbert, Phys. Rev. B12:2111 (1975).

    Google Scholar 

  22. G.A. Henderson, Int. J. Quantum Chem. 13:143 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Frishberg, C.A., Goldberg, M.J., Massa, L.J. (1982). Quantum Model of the Coherent Diffraction Experiment: Recent Generalizations and Applications. In: Coppens, P., Hall, M.B. (eds) Electron Distributions and the Chemical Bond. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3467-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3467-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3469-9

  • Online ISBN: 978-1-4613-3467-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics