Skip to main content

Thermographic Detection of Polymer/Metal Adhesion Failures

  • Chapter
Adhesion Aspects of Polymeric Coatings

Abstract

Thermography is based on the remote mapping of surface temperature distributions. When heat is appropriately applied to a sample, subsurface flaws can become projected onto the surface temperature profile due to differences between their thermal transfer properties and those of the bulk. Although not widely exploited in this area in the past, thermography can be an effective nondestructive means of monitoring polymer/metal bond continuity. This work examines the nature of thermographic detection techniques as they relate specifically to polymer/metal adhesion studies. The physical phenomena involved are reviewed, and a basic heat transfer model is presented as a prototype for quantitative analysis of thermographic data. Fundamentals of instrumentation and experimental techniques are outlined, and one specific experimental system is detailed. The application of thermography to polymer/metal adhesion studies is demonstrated by specific examples, and much of the previous pertinent work reported in the literature is referenced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Schliekelmann, Non-Destructive Testing, 79, April 1972.

    Google Scholar 

  2. R. J. Schliekelmann, Non-Destructive Testing, 144, June 1972.

    Google Scholar 

  3. W. D. Lawson and J. W. Sabey, in “Research Techniques in Non-destructive Testing”, R. S. Sharpe, Editor, pp. 443–479, Academic Press, New York, 1970.

    Google Scholar 

  4. J. L. Fergason, Appl. Optics, 7, 1729 (1968).

    Article  CAS  Google Scholar 

  5. S. E. Phinney, IBM Internal Report #65-292-008, Federal Systems Division, Owego, New York, 1965.

    Google Scholar 

  6. R. B. Barnes, Appl. Optics, 7, 1673 (1968).

    Article  CAS  Google Scholar 

  7. J. Ryan, Australian Radiology, 13, 23 (1969).

    Article  CAS  Google Scholar 

  8. S. I. C. Herma van Voss and P. Thomas, “Medical Thermography”, S. Karger, Switzerland, 1969.

    Google Scholar 

  9. J. D. Haberman, in “CRC Critical Reviews in Radiological Science”, pp. 427–465, CRC Press, Cleveland, 1971.

    Google Scholar 

  10. C. K. Hsieh and W. A. Ellingson, in “Proceedings of the Fifteenth International Thermal Conductivity Confernece”, pp. 11–22, Plenum Press, New York, 1978.

    Google Scholar 

  11. C. K. Hsie, W. A. Ellingson and K. C. Su, Argonne National Laboratory Rreport, in press.

    Google Scholar 

  12. E. W. Kutzscher and K. H. Zimmerman, Appl. Optics, 7, 1715 (1968).

    Article  CAS  Google Scholar 

  13. A. J. Intrieri, Materials Evaluation, 153, July 1970.

    Google Scholar 

  14. S. E. Cohen, Non-Destructive Testing, 74, April 1973.

    Google Scholar 

  15. B. G. Martin, Department of the Army Report #RT-TR-63-1, 1963. (Available from Armed Services Technical Information Agency, Arlington Hall Station, Arlington 12, Virginia.)

    Google Scholar 

  16. F. C. Hund, “in Symposium on Recent Developments in Non-destructive Testing of Missiles and Rockets”, pp. 62–83, ASTM, Philadelphia, PA, 1962.

    Google Scholar 

  17. F. E. Alzofon, L. E. Florant, R. K. Ronald, M. J. Vamm and J. E. Fitzgerald, in “Symposium on Recent Developments in Non-destructive Testing of Missiles and Rockets”, pp. 105–114, ASTM, Philadelphia, PA, 1962.

    Google Scholar 

  18. P. R. Yettito, in Applied Polymer Symposia, No. 3, pp. 435–454, Interscience Publishers, New York, 1966.

    Google Scholar 

  19. O. R. Gericke and P. E. J. Vogel, Materials Evaluation, 1, February 1964.

    Google Scholar 

  20. H. E. Randall, IBM Internal Report #65-544-024, Federal Systems Division, Owego, New York, 1965.

    Google Scholar 

  21. S. N. Bobo, Non-Destructive Testing, 345, October 1970.

    Google Scholar 

  22. K. L. Reifsnider, E. G. Henneke and W. W. Stinchcomb, in “Mechanics of Non-destructive Testing”, W. W. Stinchcomb, Editor, pp. 249–276, Plenum Press, New York, 1980.

    Google Scholar 

  23. P. C. Young, W. W. Stinchcomb and K. L. Reifsnider, in “Non-destructive Evaluation and Flow Criticality for Composite Materials”, pp 316–338, ASTM, Philadelphia, PA, 1979.

    Book  Google Scholar 

  24. R. D. Dixon, G. D. Lassahn and A. DiGiallonardo, Materials Evaluation, 30, 73 (1972).

    Google Scholar 

  25. P. C. Young, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1979.

    Google Scholar 

  26. M. N. Gibbons, M. S. Thesis, Virginia Polytechnic Institute, Blacksburg, Virginia, 1979.

    Google Scholar 

  27. J. D. Whitcomb, in “Composite Materials: Testing and Design”, pp. 502–516, ASTM, Philadelphia, PA, 1979.

    Chapter  Google Scholar 

  28. M. M. Chen, C. O. Pederson and J. C. Chato, J. Biomechanical Eng., 58, May 1977.

    Google Scholar 

  29. H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids”, 2nd ed., pp. 18ff, Clarendon Press, Oxford, 1975.

    Google Scholar 

  30. E. R. G. Eckert and Robert M. Drake, Jr., “Analysis of Heat and Mass Transfer”, McGraw-Hill, New York, 1972.

    Google Scholar 

  31. G. Stolz, Jr., ASME J. Heat Transfer, 82, 20 (1960).

    Google Scholar 

  32. I.Frank, ASME J.Heat Transfer, 85, 378 (1963).

    Google Scholar 

  33. O. R. Burggraf, ASME J. Heat Transfer, 86, 373 (1964).

    Google Scholar 

  34. C. K. Hsieh and K. C. Su, ASME J. Heat Transfer, 102, 324 (1980).

    Article  Google Scholar 

  35. C. K. Hsieh and K. C. Su, ASME J. Heat Transfer, 103, 42 (1981).

    Google Scholar 

  36. J. L. Cochran and B. E. Dom, IBM Technical Disclosure Bulletin, 23, 935 (1980).

    Google Scholar 

  37. E. O. Doebelin, “Measurement Systems Application and Design”, pp. 540–561, McGraw-Hill, New York, 1975.

    Google Scholar 

  38. K. L. Mittal, Editor, “Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings”, ASTM, Philadelphia, PA, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Dom, B.E., Evans, H.E., Torres, D.M. (1983). Thermographic Detection of Polymer/Metal Adhesion Failures. In: Mittal, K.L. (eds) Adhesion Aspects of Polymeric Coatings. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3658-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3658-7_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3660-0

  • Online ISBN: 978-1-4613-3658-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics