Skip to main content

Comparative Study of the Reactivity of Gaseous Ions in Selected Internal Energy States by Using a Tandem and a Triple Mass Spectrometer

  • Chapter
Molecular Ions

Abstract

Much of our knowledge of the structure, energetics, and other physical and chemical properties of molecular and fragment ions derives from the study of the various ways in which electromagnetic radiation and atomic particles can interact with matter. An interaction or a reaction implies that the reactants are transformed into final products, as a result of exchange of energy and particles between them. For a complete understanding of a particular interaction, we need to know the structure and energetics of the reactants, intermediate products, and final products involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. B. Hasted, Physics of Atomic Collisions, Butterworths, London (1972).

    Google Scholar 

  2. L. G. Christophorou, Atomic and Molecular Radiation Physics, Wiley-Interscience, London (1971).

    Google Scholar 

  3. J. Berkowitz, Photoabsorption, Photoionization, and Photoelec- tron Spectroscopy, Academic Press, New York (1979).

    Google Scholar 

  4. A. R. West, ed., “Molecular Spectroscopy,” Heyden & Son, London (1977).

    Google Scholar 

  5. P. Ausloos, ed., Interaction between Ions and Molecules, Plenum Press, New York (1975).

    Google Scholar 

  6. P. Ausloos, ed., Kinetics of Ion-Molecule Reactions, Plenum Press, New York (1979).

    Google Scholar 

  7. M. T. Bowers, ed., Gas Phase Ion Chemistry, Vols. 1 and 2, Academic Press, New York (1979).

    Google Scholar 

  8. E. Lindholm, in: “Ion-Molecule Reactions,” J. L. Franklin, ed., Plenum Press, New York (1972), Vol. 2, p. 457.

    Google Scholar 

  9. I. Szabo, Arkiv Fysik, 31, 287 (1966).

    Google Scholar 

  10. I. Szabo, in: “Advances in Mass Spectrometry,” Vol. 7A, N. R. Daly, ed., Heyden & Son, London (1978), p. 258.

    Google Scholar 

  11. I. Szabo, “Experimental determination of rate constants for consecutive ion molecule reactions,” in: “Advances in Mass Spectromety,” Vol. 8, A. Quayle, ed., Heyden & Son, London, (1980), p. 194.

    Google Scholar 

  12. I. Szabo, Arkiv Fysik, 33, 57 (1966).

    Google Scholar 

  13. I. Szabo, Arkiv Fysik, 35, 339 (1967).

    Google Scholar 

  14. I. Szabo, Int. J. Mass Spectrom. Ion Physics, 2, 103 (1969).

    Article  Google Scholar 

  15. I. Szabo, Int. J. Mass Spectrom. Ion Physics, 3, 169 (1969).

    Article  Google Scholar 

  16. I. Szabo and P J. Derrick, Int. J. Mass Spectrom. Ion Physics 7, 55 (1971).

    Article  Google Scholar 

  17. P. J. Derrick and I. Szabo, Int. J. Mass Spectrom. Ion Physics, 7, 71 (1971).

    Article  Google Scholar 

  18. W. Forst, “Theory of Unimolecular Reactions,” Academic Press, New York (1973).

    Google Scholar 

  19. K. Levsen, “Fundamental Aspects of Organic Mass Spectrometry,” Progress in Mass Spectrometry, Vol. 4, Verlag Chemie, Weinheim (1978).

    Google Scholar 

  20. J. W. Rabalais, “Principles of Ultraviolet Photoelectron Spec-troscopy,” Wiley-Interscience, New York (1977).

    Google Scholar 

  21. J. Sunner and I. Szabo, in: “Advances in Mass Spectrometry,” Vol. 7B, N. R. Daly, ed., Heyden & Son, London (1978), p. 1383.

    Google Scholar 

  22. I. Koyano, “Ion-Molecule Reactions,” in: “Comprehensive Chemical Kinetics”, C. H. Bamford and C. F. H. Tipper, eds., Elsevier, Amsterdam (1976), p. 293.

    Google Scholar 

  23. J. B. Laudenslager, W. T. Huntress, Jr., M. T. Bowers, J. Chem. Phys., 61, 4600 (1974).

    Article  ADS  Google Scholar 

  24. P. Ausloos, J. R. Eyler, and S. G. Lias, Chem. Phys. Lett., 30, 21 (1975).

    Article  ADS  Google Scholar 

  25. M. Chau and M. T. Bowers, Chem. Phys. Lett., 44, 490 (1976).

    Article  ADS  Google Scholar 

  26. V. G. Anicich, J. B. Laudenslager, W. T. Huntress, Jr., and J. H. Futrell, J. Chem. Phys., 67, 4340 (1977).

    Article  ADS  Google Scholar 

  27. E. W. Kaiser, A. Crowe, and W. E. Falconer, J. Chem. Phys., 61, 2720 (1974).

    Article  ADS  Google Scholar 

  28. C. E. Klots, D. M. Mintz, and T. Baer, J. Chem. Phys., 6£, 5100 (1977).

    Google Scholar 

  29. T. Baer, “State selection by photoion-photoelectron coincidence,” in: Ref. [7], Vol. 1, p. 153.

    Google Scholar 

  30. K. E. McCulloh, T. E. Sharp, and H. M. Rosenstock, J. Chem. Phys., 42, 3501 (1965).

    Article  ADS  Google Scholar 

  31. A. Giardini-Guidoni, G. Missoni, R. Camilloni, and G. Stefani, in: “Advances in Mass Spectrometry,” Vol. 7A, N. R. Daly, ed., Heyden & Son, London (1978), p. 175.

    Google Scholar 

  32. D. W. Turner, C. Baker, A. D. Baker, and C. R. Bundle, “Molecular Photoelectron Spectrosopy,” Wiley-Interscience, New York (1970).

    Google Scholar 

  33. B. Brehm and E. von Puttkammer, Z. Naturforsch., Teil A, 22, 8 (1967).

    Google Scholar 

  34. R. Stockbauer, J. Chem. Phys., 70, 2108 (1979).

    Article  ADS  Google Scholar 

  35. R. C. Dunbar, “Ion photodissociation,” in: Ref. [7], Vol. 2, p. 181.

    Google Scholar 

  36. J. P. Maier, “Decay processes of the lowest excited electronic states of polyatomic radical cations,” in: Ref. [6], p. 437.

    Google Scholar 

  37. E. Lindholm, in: “Ion-Molecule Reactions in the Gas Phase,” Advances in Chemistry, Series, No. 58, R. F. Gould, ed., American Chemical Society, Washington, D.C. (1966), p. 1.

    Google Scholar 

  38. J. H. Futrell and T. O. Tiernan, in: “Ion-Molecule Reactions,” J. L. Franklin, ed., Vol. 2, Plenum Press, New York (1972), p. 485.

    Google Scholar 

  39. S. Ikuta, K. Yoshihara, and T. Shiokawa, Bull. Chem. Soc. Japan Japan, 49, 66 (1976).

    Article  Google Scholar 

  40. A. Henglein, in: “Molecular Beams and Reaction Kinetics,: Proceedings of the International School of Physics Enrico Fermi,” C. Schlier, ed., Academic Press, New York (1970), p. 139.

    Google Scholar 

  41. G. Eisele, A. Henglein, and G. Bosse, Ber. Bunseriges. Phys. Chem., 78, 140 (1974).

    Google Scholar 

  42. A. Henglein, in: “Ion-Molecule Reactions in Gases,” Advances in Chemistry Series, No. 58, R. F. Gould, American Chemical Society, Washington, D.C. (1966), p. 63.

    Google Scholar 

  43. Z. Herman and R. Wolfgang, in: “Ion-Molecule Reactions,” J. L. Franklin, ed., Plenum Press, New York, Vol. 2 (1972), p. 553.

    Google Scholar 

  44. W. R. Gentry, “Molecular Beam Studies of Ion-Molecule Reactions,” in: Ref. [6], p. 81.

    Google Scholar 

  45. W. R. Gentry, “Molecular Beam Techniques: Applications to the Study of Ion-Molecule Reactions,” in: Ref [7], Vol. 2, p. 221.

    Google Scholar 

  46. J. L. Franklin, ed., “Ion-Molecule Reactions, Part I, Kinetics and Dynamics,” Benchmark Papers in Physical Chemistry and Chemical Physics 13. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania (1979).

    Google Scholar 

  47. JL Franlin, ed., “Ion-Molecule Reactions, Part I, Kinetics and Dynamics,” Benchmark Papers in Physical Chemistry and Chemical Physics 13. Dowden, Hutchinson & Ross, Stroudsburg Pennylvania (1979).

    Google Scholar 

  48. A. Giardini-Guidoni, and L. Friedman, J. Chem. Phys., 45, 937 (1966).

    Article  ADS  Google Scholar 

  49. J. H. Futrell and F. P. Abramson, in: “Ion-Molecule Reactions in the Gas Phase,” Advances in Chemistry, Series No. 58, R. F. Gould, ed., American Chemical Society, Washington, D.C. (1966), p. 107.

    Google Scholar 

  50. T. Su and M. T. Bowers, “Classical ion-molecule collision theory,” in: Ref. [7], Vol. 1, p. 83.

    Google Scholar 

  51. K. M. Refay and W. A. Chupka, J. Chem. Phys., 43, 2544 (1965).

    Article  ADS  Google Scholar 

  52. P. M. Hierl, V. Pacak, and Z. Herman, J. Chem. Phys., £7, 2678 (1977).

    Google Scholar 

  53. E. Lindeman, L. C. Frees, R. W. Rozett, and W. S. Koski, J. Chem. Phys., 56, 1003 (1972).

    Article  ADS  Google Scholar 

  54. D. L. Albritton, “Energy Dependences of Ion-Neutral Reactions Studied in Drift Tubes,” in: Ref. [6], p. 119.

    Google Scholar 

  55. I. Szabo and C. Hägg, to be submitted for pulbication in the Int. J. Mass Spectrom. Ion Physics.

    Google Scholar 

  56. J. E. Mbnahan and H. E. Stanton, J. Chem. Phys., 37, 2654 (1963).

    Article  ADS  Google Scholar 

  57. T. O. Tiernan, “Reactions of Negative Ions,” in: Ref. [5], p. 353.

    Google Scholar 

  58. J. Sunner and I. Szabo, Int. J. Mass Spectrom. Ion Physics, 25, 241 (1977).

    Article  Google Scholar 

  59. J. Sunner and I. Szabo, Int. J. Mass Spectrom. Ion Physics, 215, 263 (1977).

    Google Scholar 

  60. J. Sunner, Int. J. Mass Spectrom. Ion Physics, 32, 285 (1980).

    Article  Google Scholar 

  61. T. O. Tiernan and J. H. Futrell, J. Phys. Chem., TL, 3080 (1968).

    Google Scholar 

  62. T. Nagatani, K. Yoshihara, and T. Shiokawa, Bull. Chem. Soc. Japan, 46, 1628 (1973).

    Article  Google Scholar 

  63. I. Szabo, Int. J. Mass Spectrom. Ion Physics, 3 103 (1969).

    Article  Google Scholar 

  64. I. Szabo, Int. J. Mass Spectrom. Ion Physics, 169 (1969).

    Google Scholar 

  65. I. Szabo, will be submitted for publication.

    Google Scholar 

  66. J. Sunner and I. Szabo, Int. J. Mass Spectrom. Ion Physics, 31, 193 (1979).

    Article  Google Scholar 

  67. J. Sunner and I. Szabo, Int. J. Mass Spectrom. Ion Physics, 31, 213 (1979).

    Article  Google Scholar 

  68. R. G. Cooks, ed., Collision Spectroscopy, Plenum Press, New York (1978).

    Google Scholar 

  69. I. Szabo, Physics Lett., 24A, 702 (1967).

    Article  ADS  Google Scholar 

  70. H. von Koch, Arkiv Fysik, 28, 529 (1965).

    Google Scholar 

  71. E. Lindholm, C. Fridh, and L. Äsbrink, Faraday Discussions of the Chemical Society, 54, 127 (1972).

    Article  Google Scholar 

  72. E. Lindholm, Arkiv Fysik, 37, 37 (1967).

    Google Scholar 

  73. C. Galloy and J. C. Lorquet, Chemical Physics, 30, 169 (1978).

    Article  ADS  Google Scholar 

  74. R. G. Bennet and E. W. Dalby, J. Chem. Phys., 32, 1111 (I960).

    Google Scholar 

  75. R. P. Schwenker, J. Chem. Phys., 1895 (1965).

    Google Scholar 

  76. E. Lindholm, I. Szabo, and P. Wilmenius, Arkiv Fysik, 15, 417 (1963).

    Google Scholar 

  77. D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, Molecular Photoelectron Spectroscopy, Wiley Interscience, New York (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Szabo, I. (1983). Comparative Study of the Reactivity of Gaseous Ions in Selected Internal Energy States by Using a Tandem and a Triple Mass Spectrometer. In: Berkowitz, J., Groeneveld, KO.E. (eds) Molecular Ions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3664-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3664-8_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3666-2

  • Online ISBN: 978-1-4613-3664-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics