Skip to main content

Tissue Optics and Photoimmunology

  • Chapter
Photoimmunology

Abstract

Whenever an organism, organ, or cell is exposed to UV or other optical radiation, the response, or lack of response, depends to some extent on the optical properties of the exposed tissues. Delineating the exact nature of this dependence is both necessary and instructive in experimental work. For example, cells in tissue culture are more sensitive to loss of viability by exposure to 254-nm radiation when they are adherent and flattened against their substrate than when they are rounded. In the latter case, a greater pathlength of cytoplasm intervenes between the plasma membrane and nucleus, resulting in more effective shielding of the DNA chromophore by cytoplasmic absorption and scattering. One can, in fact, use this to measure the optical absorbance of living cytoplasm.1 Thus, one of the first concerns in the study of tissue optics is to ascertain the fraction of incident radiation at specified wavelengths that reaches important chromophores and initiates responses, or perhaps for the immunologist, that reaches the tissues and cells mediating immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams JR: The survival of cultured human cells irradiated with ultraviolet light. PhD thesis, Harvard University, 1972.

    Google Scholar 

  2. Wan S, Anderson RR, Parrish JA: Analytical modeling for the optical properties of skin with in vitro and in vivo applications. Photochem Photobiol 34:493–499, 1981.

    PubMed  CAS  Google Scholar 

  3. Van Gernert MJC, Hulshergen-Henning JPH: A model approach to laser coagulation of dermal vascular lesions. Arch Dermatol Res 270:429–439, 1981.

    Article  Google Scholar 

  4. Atkins JT: Optical properties of turbid materials, in Urbach F (ed): The Biological Effects of Ultraviolet Radiation (With Emphasis on the Skin). Oxford, Pergamon Press, 1969, pp 141–150.

    Google Scholar 

  5. Svaasand LO, Doiron DR, Profio AE: Light Distribution in Tissue during Photoradiation Therapy. Davis, California, University of Southern California School of Medicine, Institute for Physics and Imaging Science, 1981.

    Google Scholar 

  6. Anderson RR, Parrish JA: The optics of human skin. J Invest Dermatol 77:13–19, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Scheuplein RJ: A survey of some fundamental aspects of the absorption and reflection of light by tissue. J Soc Cosmet Chern 15:111–122, 1964.

    Google Scholar 

  8. Solen J, Laden K: Factors affecting the penetration of light through stratum corneum. J Soc Cosmet Chem 28:125–137, 1977.

    Google Scholar 

  9. Anderson RR, LeVine MJ, Parrish JA: Selective modification of the optical properties of psoriatic vs. normal skin. Book of Abstracts, 8th International Photobiology Congress, Strasbourg, France, July 1980, p 152.

    Google Scholar 

  10. Everett MA, Yeargers E, Sayre RM, et al: Penetration of epidermis by ultraviolet rays. Photochem Photobiol 5:533–542, 1966.

    Article  PubMed  CAS  Google Scholar 

  11. Pathak MA: Photobiology of melanogenesis: Biophysican aspects, in: Montagna W, Hu F (eds): Advances in Biology of the Skin, vol VIII, The Pigmentary System. Oxford, Pergamon Press, 1967, pp 397–420.

    Google Scholar 

  12. Hais IM, Strych A: Increase in urocanic acid concentration in human epidermis following isolation. Coll Czech Chem Comm 34:649–655, 1969.

    CAS  Google Scholar 

  13. Baden HP, Pathak MA: The metabolism and function of urocanic acid in skin. J Invest Dermatol 48:11–17, 1967.

    PubMed  CAS  Google Scholar 

  14. Parrish JA, Jaenicke KF, Anderson RR: Erythema and melanogenesis action spectra of normal skin. Photochem Photobiol 36:187–191, 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Parrish JA, Zaynoun S, Anderson RR: Cumulative effects of repeated subthreshold doses of ultraviolet radiation. J Invest Dermatol 76:356–358, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Langner A, Kligman A: Tanning without sunburn with aminobenzoic acid type screen. Arch Dermatol 106:338–343, 1972.

    Article  PubMed  CAS  Google Scholar 

  17. Jimbow K, Szabo G, Pathak MA, et al: The role of 100 Ã… filaments of human melanocyte in pigmentation of skin stimulated by ultraviolet radiation. J Cell Biol 19:263, 1971.

    Google Scholar 

  18. Crippa PR, Cristofoletti V, Romeo N: Band model for melanin deduced from optical absorption and photoconductivity experiments. Biochim Biophys Acta 538:164–169, 1978.

    PubMed  CAS  Google Scholar 

  19. Kaidbey KH, Poh-Agin P, Sayre RR, et al: Photoprotection by melanin–A comparison of black and caucasian skin. J A m Acad Dermatol 1:249–260, 1979.

    Article  CAS  Google Scholar 

  20. Olson RL, Gaylor J, Everett MA: Skin color, melanin, and erythema. Arch Dermatol 108:541–544, 1973.

    Article  PubMed  CAS  Google Scholar 

  21. Hausser KW, Vahle W: Sunburn and suntanning, in Urbach F (ed): The Biologic Effects of Ultraviolet Radiation (With Emphasis on the Skin). Oxford, Pergamon Press, 1969, pp 3–21.

    Google Scholar 

  22. Zeniske A, Krahl JA: The occurrence of urocanic acid in sweat. Biochim Biophys Acta 12:479–484, 1953.

    Article  Google Scholar 

  23. Everett MA, Anglin HJ, Bever AT: Ultraviolet-induced biochemical alterations in skin. Arch Dermatol 84:717–724, 1981.

    Google Scholar 

  24. Anderson RR, Blank IH, Parrish JA: Mechanisms of increased ultraviolet transmission through human skin after topical applications (abstract). Program and Abstracts, 7th Annual Meeting of the American Society for Photobiology, Pacific Grove, California, June 1979, p 141.

    Google Scholar 

  25. Hardy JD, Hammell HT, Murgatroyd D: Spectral transmittance and reflectance of excised human skin. JAppl Physiol 9:257–264, 1956.

    CAS  Google Scholar 

  26. Findlay GH: Blue skin. Br J Dermatol 83:127–134, 1970.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson RR, Hu J, Parrish JA: Optical radiation transfer in the human skin and application in in vivo remittance spectroscopy. In Marks R, Payne DA (eds): Proceedings of the Symposium on Bioengineering and the Skin, Cardiff, Wales, July 19–21, 1979. London, MTP Press, Ltd., 1981, pp 253–266.

    Google Scholar 

  28. Kubelka P, Munk F: Ein Beitrag zur Optik der farbanstriche. Z Technichse Physik 12:593–601, 1931.

    Google Scholar 

  29. Kubelka P: New contributions to the optics of intensely light-scattering materials, Part I. J Opt Soc Am 38:488–457, 1948.

    Google Scholar 

  30. Kortum G: Reflectance Spectroscopy. New York, Springer-Verlag, 1969.

    Google Scholar 

  31. Sayre RM: Optical scattering in human epidermis. PhD thesis, State University of New York at Buffalo, 1973.

    Google Scholar 

  32. Bruce RA: Noninvasive estimation of bilirubin and hemoglobin oxygen saturation in the skin by reflection spectrophotometry. PhD thesis, Duke University, Durham, North Carolina, 1978.

    Google Scholar 

  33. Bachem A, Reed CI: The transparency of live and dead animal tissue to ultraviolet light. Am J Physiol 90:600–606, 1929.

    CAS  Google Scholar 

  34. Bachem A, Reed CI: The penetration of ultraviolet light through the human skin. Arch Phys Therapy 11:49–56, 1930.

    Google Scholar 

  35. Traegar RT: Physical Functions of the Skin. New York; Academic Press, 1966, pp 96–107.

    Google Scholar 

  36. Haunemann RE, DeWitt DP, Weichel JF: Neonatal serum bilirubin from skin reflectance. Pediatr Res 12:207–210, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Publishing Corporation

About this chapter

Cite this chapter

Anderson, R.R. (1983). Tissue Optics and Photoimmunology. In: Parrish, J.A., Kripke, M.L., Morison, W.L. (eds) Photoimmunology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3670-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3670-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3672-3

  • Online ISBN: 978-1-4613-3670-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics