Skip to main content

Neurotransmitter Theories of Schizophrenia

  • Chapter
Handbook of Psychopharmacology

Abstract

The release and re-uptake of theories of schizophrenia is a process nearly as universal as neurotransmission itself, since every neurotransmitter has been proposed, at one time or another, as contributing to the etiology of the disease. There are theories implicating acetylcholine, noradrenaline, serotonin, GABA, and dopamine. Certainly this phenomenon underscores the relevance of basic research, since each new discovery of neuroregulatory substances brings with it possibilities for theorizing and experimenting about schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abood, L. G., and Biel, J. H., 1962, Anticholinergic psychotomimetic agents, Int. Rev. Neurobiol. 4:217–273.

    Google Scholar 

  • Aghajanian, G. K., Foote, W. E., and Sheard, M. H., 1968, Lysergic acid diethylamide: Sensitive neuronal units in the midbrain raphe, Science 161:706–708.

    PubMed  Google Scholar 

  • Aghajanian, G. K., Foote, W. E., and Sheard, M. H., 1970, Action of psychotogenic drugs on single midbrain raphe neurons, J. Pharmacol. Exp. Ther. 171:178–187.

    PubMed  Google Scholar 

  • Alzheimer, A., 1897, Beitrage zur pathologischen Anatomie der Hirnrinde und zur anatomischen Grundlage einiger Psychosen, Monatschr. Psychiatr. Neurol. 2:82–120.

    Google Scholar 

  • AndÉn, N.-E., 1972, Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and anti-acetylcholine drugs, J. Pharm. Pharmacol. 24:905–906.

    PubMed  Google Scholar 

  • Angrist, B. M., and Gershon, S., 1970, The phenomenology of experimentally induced amphetamine psychosis — preliminary observations, Biol. Psychiatry 2:95–107.

    PubMed  Google Scholar 

  • Atsmon, A., Blum, I., Wijsenbeek, H., Maoz, B., Steiner, M., and Ziegelman, G., 1971, The short-term effects of adrenergic-blocking agents in a small group of psychotic patients, Psychiatr. Neurol. Neurochir. 74:251–258.

    Google Scholar 

  • Bidder, T. G., Mandel, L. R., Ahn, H. S., Vandeeuvel, W. J. A., and Walker, R. W., 1974, Blood and urinary dimethyltryptamine concentrations in acute psychotic disorders, Lancet 1:165.

    PubMed  Google Scholar 

  • Bleuler, E., 1950, Dementia Praecox or the Group of Schizophrenias, International University Press, New York (orig. pub. 1911).

    Google Scholar 

  • Bloom, F. E., Hoffer, B. J., and Siggins, G. R., 1971, Studies on norepinephrine-containing afferents to purkinje cells of rat cerebellum. II. Sensitivity of purkinje cells to norepinephrine and related substances administered by microiontophoresis, Brain Res. 25:523–534.

    PubMed  Google Scholar 

  • Boring, E. G., 1950, A History of Experimental Psychology, Apple ton-Century-Crofts, New York.

    Google Scholar 

  • Boullin, D. J., Coleman, M., and O’Brien, R. A., 1970, Abnormalities in platelet 5-hydroxytryptamine efflux in patients with infantile autism, Nature 226:371.

    PubMed  Google Scholar 

  • Bowers, M. B., Jr., 1973, 5-Hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) following probenecid in acute psychotic patients treated with phenothiazines, Psychopharmacologia 28:309–318.

    PubMed  Google Scholar 

  • Bradley, P. B.. 1963, Phenothiazine derivatives, in: Physiological Pharmacology, Vol. 1 (W. Root and F. Hofmann, eds.), pp. 417–477, Academic Press, New York.

    Google Scholar 

  • Bunney, B. S., and Aghajanian, G. K., 1975, Antipsychotic drugs and central dopaminergic neurons: A model for predicting therapeutic efficacy and extrapyramidal side effects, in: Prediction in Psychopharmacology (A. Sudilovsky, S. Gershon, and B. Beer, eds.), Raven Press, New York.

    Google Scholar 

  • Bürki, H. R., Eichenbergen, E., Sayers, A. C., and White, T. G., 1975, Clozapine and the dopamine hypothesis of schizophrenia: A critical appraisal, Pharmakopsychiatrie 8:115–121.

    Google Scholar 

  • Burkman, A. M., 1973, Biological activity of apomorphine fragments: Dissociation of emetic and stereotypicaleffects Neuropharmacology 12:83–85.

    PubMed  Google Scholar 

  • Callaway, E., 1959, The influence of amobarbital (amylbarbitone) and methamphetamine on the focus of attention, J. Ment. Sci. 105:382–392.

    PubMed  Google Scholar 

  • Callaway, E., and Band, R. J., 1958, Some psychopharmacological effects of atropine, Arch. Neurol. Psychiatry 79:91–102.

    Google Scholar 

  • Callaway, E., and Stone, G., 1970, Drugs and Behavior, Wiley, New York.

    Google Scholar 

  • Carlsson, A., and Lindqvist, M., 1963, Effect of chlorpromazine and haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. (Kbh.) 20:140–144.

    Google Scholar 

  • Carroll, B. J., Frazer, A., Schless, A., and Mendels, J., 1973, Cholinergic reversal of manic symptoms, Lancet 1:427–428.

    PubMed  Google Scholar 

  • Carpenter, W. T., Fink, E. B., Narasimhachari, N., and Himwich, H. E., 1975, A test of the transmethylation hypothesis in acute schizophrenic patients, Am. J. Psychiatry 132:1067–1071.

    PubMed  Google Scholar 

  • Childs, B., Worden, F., Matthysse, S., and Gershon, E., (eds.), 1976, Frontiers in psychiatric genetics, Neurosciences Research Program Bulletin No. 14, pp. 1–107.

    Google Scholar 

  • Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L., and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs, Proc. Natl. Acad. Sci. U.S.A. 71:1113–1117.

    PubMed  Google Scholar 

  • Cole, J. O., and Clyde, D. J., 1961, Extrapyramidal side effects and clinical response to the phenothiazines, Rev. Can. Biol. 20:565–574.

    PubMed  Google Scholar 

  • Creveling, C. R., and Daly, J. W., 1967, Identification of 3, 4-dimethoxyphenylethylamine from schizophrenic urine by mass spectrometry, Nature 216:190–191.

    PubMed  Google Scholar 

  • Cromwell, R. L., and Dokecki, P. R., 1968, Schizophrenic language: A disattention interpretation, in: Developments in Applied Psycholinguistics Research (S. Rosenberg and J. H. Koplin, eds.), pp. 209–260, Macmillan, New York.

    Google Scholar 

  • Davison, K., and Bagley, C. R., 1969, Schizophrenia-like psychoses associated with organic disorders of the central nervous system: A review of the literature, in: Current Problems in Neuropsychiatry: Schizophrenia, Epilepsy, the Temporal Lobe (R. N. Herrington, ed.), pp. 113–184, Br. J. Psychiatry Spec. Publ. No. 4, Headley Bros., Ashford, Kent.

    Google Scholar 

  • Day, H., and Thomas, E. L., 1967, Effect of amphetamine on selective attention, Percept. Mot. Skills 29:1119–1125.

    Google Scholar 

  • Domino, E. F., 1964, Neurobiology of phencyclidine (Sernyl), a drug with an unusual spectrum of pharmacological activity, Int. Rev. Neurobiol. 6:303–347.

    PubMed  Google Scholar 

  • Downing, R. W., Ebert, J. N., and Shubrooks, S. J., 1963, Effects of phenothiazines on the thinking of acute schizophrenics, Percept. Mot. Skills 17:511–520.

    PubMed  Google Scholar 

  • Dunlap, C. B., 1924, Dementia praecox. Some preliminary observations on brains from carefully selected cases, and a consideration of certain sources of error, Am. J. Psychiatry 3:403–421.

    Google Scholar 

  • Dunner, D. L., Cohn, C. K., Weinshilboum, R. M., and Wyatt, R. J., 1973, The activity of dopamine beta-hydroxylase and methionine-activating enzyme in blood of schizophrenic patients, Biol. Psychiatry 6:215–220.

    PubMed  Google Scholar 

  • Ellinwood, E. H., Jr., Sudilovsky, A., and Nelson, L. M., 1973, Evolving behavior in the clinical and experimental amphetamine (model) psychosis, Am. J. Psychiatry 130:1088–1093.

    PubMed  Google Scholar 

  • Frederiksen, P. K., 1975, Baclofen in the treatment of schizophrenia, Lancet 1:702–703.

    PubMed  Google Scholar 

  • Friedhoff, A. J., and Van Winkle, E., 1962, The characteristics of an amine found in the urine of schizophrenic patients, J. Nerv. Ment. Disord. 135:550–555.

    Google Scholar 

  • Friedhoff, A. J., Schweitzer, J. W., and Miller, J. 1972, Biosynthesis of mescaline and N-acetylmescaline by mammalian liver, Nature 237:454–455.

    PubMed  Google Scholar 

  • Fulcher, J. H., Gallagher, W. J., and Pfeiffer, C. C., 1957, Comparative lucid intervals after amobarbital, CO2, and arecoline in the chronic schizophrenic, Arch. Neurol. Psychiatry 78:392–395.

    Google Scholar 

  • Ganong, W. F., 1974, Brain mechanisms regulating the secretion of the pituitary gland, in: The Neurosciences: Third Study Program (F. O. Schmitt and F. G. Worden, eds.), pp. 549–563, M.I.T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Garelis, E., Gillin, J. C., Wyatt, R. J., and Neff, N., 1975, Elevated blood serotonin concentrations in unmedicated chronic schizophrenic patients: A preliminary study, Am. J. Psychiatry 132:184–186.

    PubMed  Google Scholar 

  • Gerlach, J., Thorsen, K., and Fog, R., 1975, Extrapyramidal reactions and amine metabolites in cerebrospinal fluid during haloperidol and clozapine treatment of schizophrenic patients, Psychopharmacologia 40:341–350.

    PubMed  Google Scholar 

  • Goldstein, M., Freedman, L. S., Ebstein, R. P., and Park, D. H., 1974, Studies on dopamine-beta-hydroxylase in mental disorders, J. Psychiatr. Res. 11:205–210.

    PubMed  Google Scholar 

  • Green, D. M., and Swets, J. A., 1974, Signal Detection Theory and Psychophysics, Krueger, New York.

    Google Scholar 

  • Groves, P. M., Wilson, C. J., Young, S. J., and Rebec, G. V., 1975, Self-inhibition by dopaminergic neurons, Science 190:522–529.

    PubMed  Google Scholar 

  • Gupta, G. P., and Dhawan, B. N., 1965, Blockade of apomorphine pecking with phenothiazines, Psychopharmacologia 8:120–130.

    PubMed  Google Scholar 

  • Hemmel, H. T., 1968, Regulation of internal body temperature, Annu. Rev. Physiol. 30:644–710.

    Google Scholar 

  • Hornykiewicz, O., 1966, Dopamine (3-hydroxytyramine) and brain function, Pharm. Rev. 18:925–964.

    PubMed  Google Scholar 

  • Ingle, D., 1975, Focal attention in the frog: Behavioral and physiological correlates, Science 188:1033–1034.

    PubMed  Google Scholar 

  • Iversen, L. L., Bird, E. D., Mackay, A. V. P., and Rayner, C. N., 1974, Analysis of glutamate decarboxylase in post-mortem brain tissue in Huntington’s chorea, J. Psychiatr. Res. 11:255–256.

    PubMed  Google Scholar 

  • Janssen, P. S. J., Niemegeers, C.J. E., Schellekens, H. K. L., and Lenaerts, F. M., 1967, Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data? IV. An improved experimental design for measuring the inhibitory effects of neuroleptic drugs on amphetamine- or apomorphine-induced “chewing” and “agitation” in rats, Arzneim. Forsch. 17:841–854.

    Google Scholar 

  • Janowsky, D. S., El-Yousef, M. K., Davis, J. M., and Sekerke, H. J., 1973a, Parasympathetic suppression of manic symptoms by physostigmine, Arch. Gen. Psychiatry 28:542–547.

    PubMed  Google Scholar 

  • Janowsky, D. S., El-Yousef, M. K., Sekerke, J., and Davis, J. M., 1973b, Provocation of schizophrenic symptoms by intravenous administration of methylphenidate, Arch. Gen. Psychiatry 28:185–191.

    PubMed  Google Scholar 

  • Janowsky, D. S., El-Yousef, and Davis, J. M., 1973c, Antagonistic effects of physostigmine and methylphenidate in man, Am. J. Psychiatry 130:1370–1376.

    PubMed  Google Scholar 

  • Kaada, B., and Bruand, H., 1960, Blocking of the cortically induced behavioral attention (orienting) response by chlorpromazine, Psychopharmacologia 1:372–388.

    PubMed  Google Scholar 

  • Kakimoto, Y., Sano, I., Kanazawa, A., Tsujio, T., and Kaneko, Z., 1967, Metabolic effects of methionine in schizophrenic patients pretreatecl with a monoamine oxidase inhibitor, Nature 216:1110–1111.

    PubMed  Google Scholar 

  • Karczmar, A. G., 1970, Central cholinergic pathways and their behavioral implications, in: Principles of Psychopharmacology (W. G. Clark and J. Del Giudice, eds.), pp. 57–86, Academic Press, New York.

    Google Scholar 

  • Karobath, M. E., 1975, Dopamin-Rezeptor-Blockade, ein möglicher Wirkungsmechanismus antipsychotichen Drogen, Pharmakopsychatrie 8:151–161.

    Google Scholar 

  • Karobath, M., and Leitich, H., 1974, Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain, Proc. Natl. Acad. Sci. U.S.A. 71:2915–2918.

    PubMed  Google Scholar 

  • Kety, S. S., 1967, Current biochemical approaches to schizophrenia, N. Engl. J. Med. 276:325–331.

    PubMed  Google Scholar 

  • Kety, S. S., 1971, The biogenic amines in the central nervous system: Their possible roles in arousal, emotion and learning, in: The Neurosciences: SecondStudy Program (F. O. Schmitt, ed.), pp. 324–336, Rockefeller University Press, New York.

    Google Scholar 

  • Key, B. J., 1961, The effect of drugs on discrimination and sensory generalization of auditory stimuli in rats, Psychopharmacologia (Berlin) 2:352–362.

    Google Scholar 

  • Killam, E. K., and Killam, K. F., 1959, Phenothiazine — pharmacologic studies, in: The Effect of Pharmacologic Agents on the Nervous System (F. J. Braceland, ed.), Chapter 37, p. 245, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Kornetsky, C., and Bain, G., 1965, The effects of chlorpromazine and pentobarbital on sustained attention in the rat, Psychopharmacologia (Berlin) 8:277–284.

    Google Scholar 

  • Koslow, S. H., Post, R., Goodwin, F., and Gillin, C., 1975, Mass fragmentographic identification and quantification of 5-methoxytryptamine (5MT) in human cerebrospinal fluid (CSF), Abstracts, 5th Ann. Mtg., Soc. for Neurosci. p. 361.

    Google Scholar 

  • Kraepelin, E., 1919, Dementia Praecox and Paraphrenia, E. and S. Livingstone, Edinburgh (orig. pub. 1913).

    Google Scholar 

  • Lang, P. J., and Buss, A. H., 1965, Psychological deficit in schizophrenia: II. Interference and activation, J. Abnorm. Psychol. 70:77–106.

    PubMed  Google Scholar 

  • Lipinski, J. F., Mandel, L. R., Ahn, H. S., Vandeeuvel, W. J. A., and Walker, R. W., 1974, Blood dimethyltryptamine concentrations in psychotic disorders, Biol. Psychiatry 9:89–91.

    PubMed  Google Scholar 

  • Maayani, S., Weinstein, H., Cohen, S., and Sokolovsky, M., 1973, Acetylcholine-like molecular arrangement in psychomimetic anticholinergic drugs, Proc. Natl. Acad. Sci. U.S.A. 70:3103–3107.

    PubMed  Google Scholar 

  • Maickel, R. P., Braunstein, M. C., Mlynn, M., Snodgrass, W. R., and Webb, R. W., 1974, Behavioral, biochemical and pharmacological effects of chronic dosage of phenothiazine tranquilizers in rats, in: The Phenothiazines and Structurally Related Drugs (I. S. Forrest, C. J. Carr, and E. Usdin, eds.), pp. 593–602, Raven Press, New York.

    Google Scholar 

  • Mandel, L., Ahn, H. S., Vandeeuvel, W. J. A., and Walker, R. W., 1972, Indoleamine-N-methyltransferase in human lung, Biochem. Pharmacol. 21:1197–1200.

    PubMed  Google Scholar 

  • Mandell, A. J., 1974, The role of adaptive regulation in the pathophysiology of psychiatric disease, J. Psychiatr. Res. 11:173–179.

    PubMed  Google Scholar 

  • Mandell, A. J., and Morgan, M., 1971, Indole(ethyl)amine-N-methyltransferase in human brain, Nature (London), New Biol. 230:85–87.

    Google Scholar 

  • Matthysse, S., 1973, Antipsychotic drug actions: A clue to the neuropathology of schizophrenia? Fed. Proc. 32:200–205.

    PubMed  Google Scholar 

  • Matthysse, S., 1974a, Implications of feedback control in catecholamine neuronal systems, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 1139–1142, Pergamon Press, Oxford.

    Google Scholar 

  • Matthysse, S., 1974b, Schizophrenia: Relationships to dopamine transmission, motor control, and feature extraction, in: The Neurosciences: Third Study Program (F. O. Schmitt and F. G. Worden, eds.), pp. 733–737, M.I.T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Matthysse, S., 1975, Neuronal models of transmitter balance, in: Neurotransmitters and Autocoid Balances Regulating Behavior (E. F. Domino and J. Davis, eds.), pp. 229–233, Edwards Bros., Ann Arbor.

    Google Scholar 

  • Matthysse, S., and Haber, S., 1975, Animal models of schizophrenia, in: Model Systems in Biological Psychiatry (D. J. Ingle and H. M. Shein, eds.), pp. 4–25, M.I.T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Matthysse, S., and Kety, S. S., 1974, Catecholamines and schizophrenia, J. Psychiatr. Res. 11:1–369.

    Google Scholar 

  • Matthysse, S., and Lipinski, J., 1975, Biochemical aspects of schizophrenia, Annu. Rev. Med. 26:551–565.

    PubMed  Google Scholar 

  • Mcghie, A., and Chapman, J., 1961, Disorders of attention and perception in early schizophrenia, Brit. J. Med. Psychol. 34:103–116.

    PubMed  Google Scholar 

  • Meltzer, H. Y., Sachar, E. J., and Frantz, A. G., 1974, Serum prolactin levels in unmedicated schizophrenic patients, Arch. Gen. Psychiatry 31:564–569.

    PubMed  Google Scholar 

  • Meltzer, H. Y., Daniels, S., and Fang, V. S., 1975, Clozapine increases rat serum prolactin levels, Life Sci. 17:339–342.

    PubMed  Google Scholar 

  • Mettler, F. A., 1955, Perceptual capacity, functions of the corpus striatum and schizophrenia, Psychiatr. Q. 29:89–111.

    PubMed  Google Scholar 

  • Meyer, A., 1963, Psychoses of obscure pathology, in: Greenfield’s Neuropathology, 2nd ed. (W. Blackwood, ed.), pp. 621–635, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Miller, R. J., 1974, The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3’, 4’-monophosphate production in rat neostriatum and limbic forebrain, Mol. Pharmacol. 10:759–766.

    Google Scholar 

  • Miller, R. J., and Hiley, C. R., 1974, Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism, Nature 248:596–597.

    PubMed  Google Scholar 

  • Mirsky, A., and Kornetsky, C., 1975, On the dissimilar effects of drugs on the digit symbol substitution and continuous performance tests Psychopharmacologia (Berlin) 5:161–177.

    Google Scholar 

  • Mirsky, A., Tecce, J., Harman, N., and Oshima, H., 1975, EEG correlates of impaired attention performance under secobarbital and chlorpromazine in the monkey, Psychopharmacologia (Berlin) 41:35–41.

    Google Scholar 

  • Mountcastle, V. B., 1975, The view from within: Pathways to the study of perception, Johns Hopkins Med. J. 136:109–131.

    PubMed  Google Scholar 

  • Myers, R. D., 1970, The role of hypothalamic transmitter factors in the control of body temperature, in: Physiological and Behavioral Temperature Regulation (J. H. Hardy, A. P. Gagge, and J. A. J. Stolwijk, eds.), Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Nash, H., 1962, Psychologic effects of amphetamines and barbiturates, J. Nerv. Ment. Disord. 134:203–217.

    Google Scholar 

  • Nielsen, J., and Goldstein, L., 1972, Improvement of performance on an attention task with chronic nicotine treatment in rats, Psychopharmacologia 26:347–360.

    Google Scholar 

  • Nishimura, T., and Gjessing, L. R., 1965, Failure to detect 3, 4-dimethoxyphenylethylamine and bufotenine in the urine from a case of periodic catatonia, Nature 206:963–964.

    PubMed  Google Scholar 

  • Orzack, M. H., and Kornetsky, C., 1966, Attention dysfunction in chronic schizophrenia, Arch. Gen. Psychiatry 14:323–326.

    PubMed  Google Scholar 

  • Orzack, M. H., Kornetsky, C., and Freeman, H., 1967, The effects of daily. administration of carphenazine on attention in the schizophrenic patient, Psychopharmacologia (Berlin) 11:31–38.

    Google Scholar 

  • Osmond, H., and Smythies, J., 1952, Schizophrenia: A new approach, J. Ment. Sci. 98:309–315.

    PubMed  Google Scholar 

  • Perry, T. L., Hansen, S., Maougall, L., and Schwartz, C. J., 1966, Urinary amines in chronic schizophrenia, Nature 212:146–148.

    PubMed  Google Scholar 

  • Persson, T., and Roos, B.-E., 1969, Acid metabolites from monoamines in CSF of chronic schizophrenics, Br. J. Psychiatry 115:95–98.

    PubMed  Google Scholar 

  • Petti Grew, J. D., and Daniels, J. D., 1973, Gamma-aminobutyric acid antagonism in visual cortex: Different effects on simple, complex and hypercomplex neurons, Science 182:81–83.

    Google Scholar 

  • Plum, F., 1972, Neuropathological findings, in: Prospects for Research in Schizophrenia (S. S. Kety and S. Matthysse, eds.), Neurosciences Research Program Bulletin No. 10, pp. 370–507.

    Google Scholar 

  • Pollin, W., 1972, The pathogenesis of schizophrenia. Arch. Gen. Psychiatry 27:29–37.

    PubMed  Google Scholar 

  • Pollin, W., Cardon, P. V., Jr., and Kety, S. S., 1961, Effects of amino acid feedings in schizophrenic patients treated with iproniazid, Science 133:104–105.

    PubMed  Google Scholar 

  • Post, R. M., and Goodwin, F. K., 1975, Time-dependent effects of phenothiazines on dopamine turnover in psychiatric patients, Science 190:488–489.

    PubMed  Google Scholar 

  • Pugh, L. A., 1968, Response time and electrodermal measures in chronic schizophrenia: The effects of chlorpromazine, J. Nerv. Ment. Disord. 146:62–70.

    Google Scholar 

  • Quarton, G., and Talland, G., 1962, The effect of methamphetamine and pentobarbital on two measures of attention, Psychopharmacologia 3:66–71.

    Google Scholar 

  • Randrup, A., and Munkvad, I., 1974, Pharmacology and physiology of stereotyped behavior, J. Psychiatr. Res. 11:1–10.

    PubMed  Google Scholar 

  • Rappaport, M., Rogers, N., Reynolds, S., and Weinmann, R., 1966, Comparative ability of normal and chronic schizophrenic subjects to attend to competing voice messages: Effects of method of presentation, message load and drugs, J. Nerv. Ment. Disord. 143:16–27.

    Google Scholar 

  • Rimon, R., Roos, B.-E., Rakkolainen, V., and Alanen, Y., 1971, The content of 5-HIAA and HVA in the CSF of patients with acute schizophrenia, J. Psychosom. Res. 15:375–378.

    PubMed  Google Scholar 

  • Roberts, E., 1972, An hypothesis suggesting that there is a defect in the GABA system in schizophrenia, in: Prospects for Research on Schizophrenia (S. S. Kety and S. Matthysse, eds.), Neurosciences Research Program Bulletin No. 10, pp. 370–507.

    Google Scholar 

  • Rose, D., and Blakemore, C., 1974, Effects of bicuculline on functions of inhibition in visual cortex, Nature 249:375–377; erratum, p. 869.

    PubMed  Google Scholar 

  • Rosenbaum, G., Cohen, B. D., Luby, E. D., Gottlieb, J. S., and Yelen, D., 1959, Comparison of Sernyl with other drugs: Simulation of schizophrenic performance with Sernyl, LSD-25, and amobarbital (Amytal) sodium. I. Attention, motor function and proprioception, Arch. Gen. Psychiatry 1:651–656.

    Google Scholar 

  • Rotrosen, J., Wallach, M. B., Angrist, B., and Gershon, S., 1972, Antagonism of apomorphine-induced stereotypy and emesis in dogs by thioridazine, haloperidol and pimozide, Psychopharmacologia 26:185–194.

    PubMed  Google Scholar 

  • Rowntree, D. W., Nevin, S., and Wilson, A., 1950, The effects of diisopropylfluorophosphonate in schizophrenia and manic depressive psychosis, J. Neurol. Neurosurg. Psychiatry 13:47–62.

    PubMed  Google Scholar 

  • Saavedra, J. M., and Axelrod, J., 1972, Psychotomimetic N-methylated tryptamines: Formation in brain in vivo and in vitro, Science 175:1365–1366.

    PubMed  Google Scholar 

  • Saavedra, J. M., and Axelrod, J., 1973, Effect of drugs on the tryptamine content of rat tissues, J. Pharmacol. Exp. Ther. 185:523–529.

    PubMed  Google Scholar 

  • Sachar, E. J., 1971, Growth hormone responses in depressive illness, Arch. Gen. Psychiatry 25:263–269.

    Google Scholar 

  • Sachar, E. J., Gruen, P. H., Karasu, T. B., Altman, N., and Frantz, A. G., 1975, Thioridazine stimulates prolactin secretion in man, Arch. Gen. Psychiatry 32:885–886.

    PubMed  Google Scholar 

  • Sachar, E. J., Gruen, P. H., Altman, N., Halpern, F. S., and Frantz, A. G., 1976, The use of neuroendocrine techniques in psychopharmacological research, in: Hormones, Behavior and Psychopathology (E.J. Sachar, ed.), pp. 161–176, Raven Press, New York.

    Google Scholar 

  • Salzinger, K., 1957, Shift in judgment of weights as a function of anchoring stimuli and instructions in early schizophrenics and normals, J. Abnorm. Soc. Psychol. 55:43–49.

    Google Scholar 

  • Salzinger, K., Portnoy, S., Pisoni, D. B., and Feldman, R. S., 1970, The immediacy hypothesis and response-produced stimuli in schizophrenic speech, J. Abnorm. Psychol. 76:258–264.

    PubMed  Google Scholar 

  • Schelkunov, E. L., 1967, Integrated effect of psychotropic drugs on the balance of cholino-, adreno-, and serotoninergic processes in the brain as a basis of their gross behavioral and therapeutic actions, Act. Nerv. Super. 9:207–217.

    Google Scholar 

  • Sedvall, G., Fyro, B., Nyback, H., Wiesel, F. A., and Wode-Helgodt, B., 1974, Mass fragmentometric determination of homovanillic acid in lumbar cerebrospinal fluid of schizophrenic patients during treatment with antipsychotic drugs, J. Psychiatr. Res. 11:75–80.

    PubMed  Google Scholar 

  • Seeman, P., and Lee, T., 1975, Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons, Science 188:1217–1219.

    PubMed  Google Scholar 

  • Shakow, D., 1962, Segmental set, Arch. Gen. Psychiatry 6:1–17.

    PubMed  Google Scholar 

  • Siggins, G. R., Hoffer, B. J., and Ungerstedt, U., 1974, Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons, Life Sci. 15:779–792.

    PubMed  Google Scholar 

  • Snyder, S. H., Banerjee, S. P., Yamamura, H. I., and Greenberg, D., 1974a, Drugs, neurotransmitters, and schizophrenia, Science 184:1243–1253.

    PubMed  Google Scholar 

  • Snyder, S. H., Greenberg, D., and Yamamura, H. I., 1974B, Antischizophrenic drugs: Affinity for muscarinic cholinergic receptor sites in the brain predicts extrapyramidal effects, J. Psychiatr. Res. 11:91–95.

    PubMed  Google Scholar 

  • Spielmeyer, W., 1930, The problem of the anatomy of schizophrenia, J. Nerv. Dis. 72:241–244.

    Google Scholar 

  • Stabenau, J. R., Creveling, C. R., and Daly, J., 1970, The “pink spot,” 3,4-dimethoxyphenylethylamine, common tea, and schizophrenia, Am. J. Psychiatry 127:611–616.

    PubMed  Google Scholar 

  • Stawarz, R. J., Robinson, S., Sulser, F., and Dingell, J. V., 1974, On the significance of the increase of homovanillic acid (HVA) caused by antipsychotics in corpus striatum and limbic forebrain, Fed. Proc. 33:246.

    Google Scholar 

  • Stein, L., and Wise, C. D., 1971, Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6-hydroxydopamine, Science 171:1032–1036.

    PubMed  Google Scholar 

  • Sutton, S., and Zubin, J., 1965, Effect of sequence on reaction time in schizophrenia, in: Behavior, Aging and the Nervous System: Biological Determinants of Speed of Behavior and Its Change with Age (J. E. Birren and A. T. Welford, eds.), Charles C Thomas, Springfield, Illinois.

    Google Scholar 

  • Swazey, J. P., 1974, Chlorpromazine in Psychiatry: A Study of Therapeutic Innovation, p. 113, M.I.T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Szara, S., 1956, Dimethyltryptamine: Its metabolism in man; the relation of its psychotic effect to serotonin metabolism, Experientia 12:441–442.

    PubMed  Google Scholar 

  • Szara, A., 1967, Hallucinogenic amines and schizophrenia (with a brief addendum on N-dimethyltryptamine), in: Amines and Schizophrenia (H. E. Himwich, S. S. Kety, and J. R. Smythies, eds.), pp. 181–197, Pergamon Press, Oxford.

    Google Scholar 

  • Takesada, M., Kakimoto, Y., Sano, I., and Kaneko, Z., 1963, 3, 4-Dimethoxyphenylethy-lamine and other amines in the urine of schizophrenic patients, Nature 199:203–204.

    PubMed  Google Scholar 

  • Teuber, H. L., 1972, Effects of focal brain lesions, in: Prospects for Research on Schizophrenia (S. S. Kety and S. Matthysse, eds.), Neurosciences Research Program Bulletin No. 10, pp. 381–385.

    Google Scholar 

  • Turner, W. J., and Merlis, S., 1959, Effects of some indolealkylamines in man, Arch. Neurol. Psychiatry 81:121–129.

    Google Scholar 

  • Valzelli, L., 1973, Psychopharmacology: An Introduction to Experimental and Chemical Principles, p. 217, Spectrum, Flushing, New York.

    Google Scholar 

  • Vogt, C., and Vogt, O., 1952, Proceedings of the First International Congress on Neuropathology, Vol. 1, p. 515, Rosenberg and Sellier, Torino, Italy.

    Google Scholar 

  • Von Studnitz, W., and Nyman, G. E., 1965, Excretion of 3, 4-dimethoxyphenylethylamine in schizophrenia, Acta Psychiatr. Scand. 41:117–121.

    Google Scholar 

  • Waldbaum, J. K., Sutton, S., and Kerr, J., 1975, Shift of sensory modality and reaction time in schizophrenia, in: Experimental Approaches to Psychopathology (M. Kietzman, S. Sutton, and J. Zubin, eds.), pp. 167–176, Academic Press, New York.

    Google Scholar 

  • Warburton, D. M., and Brown, K., 1972, The facilitation of discrimination performance by physostigmine sulphate, Psychopharmacologia (Berlin) 27:275–284.

    Google Scholar 

  • Weil-Malherbe, H., and Szara, S. I., 1971, The Biochemistry of Functional and Experimental Psychoses, pp. 148–155, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Wiesel, F.-A., and Sedvall, G., 1975, Effect of antipsychotic drugs on homovanillic acid levels in striatum and olfactory tubercle of the rat, Eur. J. Pharmacol. 30:364–367.

    PubMed  Google Scholar 

  • Weiss, B., 1970, Amphetamine and the temporal structure of behavior, in: Amphetamine and Related Compounds (F. Costa and S. Garrattini, eds.), Raven Press, New York.

    Google Scholar 

  • Weiss, B., and Laties, V. G., 1962, Enhancement of human performance by caffeine and amphetamines, Pharmacol. Rev. 14:1.

    PubMed  Google Scholar 

  • Wise, C. D., Baden, M. M., and Stein, L., 1974, Post-mortem measurement of enzymes in human brain: Evidence of a central noradrenergic deficit in schizophrenia, J. Psychiatr. Res. 11:185–198.

    PubMed  Google Scholar 

  • Wolf, A., and Cowen, D., 1949, Pathology, in: Selective Partial Ablation of the Frontal Cortex (A. Mettler, ed.), pp. 453–476, Hoeber Press, New York.

    Google Scholar 

  • Woolley, D. W., 1957, Serotonin in mental disorders, in: Hormones, Brain Function and Behavior (H. Hoagland, ed.), pp. 127–146, Academic Press, New York.

    Google Scholar 

  • Wyatt, R. J., Mandel, L. R., Ahn, H. S., Walker, R. W., and Vandeeuvel, W. J. A., 1973a, Gas-chromatographic-mass spectrometric isotope dilution determination of N,N-dimethyltryptamine concentrations in normal and psychiatric patients, Psychopharmacologia 31:265–270.

    PubMed  Google Scholar 

  • Wyatt, R. J., Saavedra, J. M., and Axelrod, J., 1973b, A dimethyltryptamine-forming enzyme in human blood, Am. J. Psychiatry 130:754–760.

    PubMed  Google Scholar 

  • Wyatt, R. J., Saavedra, J. M., Belmaker, R., Cohen, S., and Pollin, W., 1973C, The dimethyltryptamine forming enzyme in blood platelets: A study in monozygotic twins discordant for schizophrenia, Am. J. Psychiatry 130:1359–1361.

    PubMed  Google Scholar 

  • Wyatt, R. J., Schwartz, M. A., Erdelyi, E., and Barchas, J. D., 1975, Dopamine ß-hydroxylase activity in brains of chronic schizophrenic patients, Science 187:368–370.

    PubMed  Google Scholar 

  • Wynne, R. D., and Kornetsky, C., 1960, The effect of chlorpromazine and secobarbital on the reaction times of chronic schizophrenics, Psychopharmacologia 1:294–302.

    PubMed  Google Scholar 

  • Yaryura-Tobias, J. A., Diamond, B., and Merlis, S., 1970, The action of L-DOPA on schizophrenic patients (a preliminary report), Curr. Ther. Res. 12:528–531.

    PubMed  Google Scholar 

  • Yorkston, N. J., Zakimku, S. A., Malik, M. K. U., Morrisson, R. C., and Havard, C. W. H., 1974, Propanolol in the control of schizophrenic symptoms, Br. Med. J. 4:633–635. (see also pp. 614–615).

    PubMed  Google Scholar 

  • Zahn, T. P., Rosenthal, D., and Shakow, D., 1973, Effect of irregular preparatory intervals on reaction time in schizophrenia, J. Abnorm. Soc. Psychol. 67:44–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Matthysse, S., Sugarman, J. (1978). Neurotransmitter Theories of Schizophrenia. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Handbook of Psychopharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4042-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4042-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4044-7

  • Online ISBN: 978-1-4613-4042-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics