Skip to main content

Uptake of Transmitter Candidates as an Approach to their Localization

  • Chapter
Metabolic Compartmentation and Neurotransmission

Abstract

Nerve endings in the brain possess membrane transport mechanisms for the uptake of various substances. The compounds thought to act as transmitters characteristically are taken up by high-affinity mechanisms (Table I) (Iversen, 1971; Snyder et al., 1970, 1973). These mechanisms are highly specific and are dependent on temperature and on a high concentration of sodium ions. They are also sensitive to inhibition of energy production or of Na, K-ATPase (see Kuhar, 1973, for references).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G. K., and Bloom, F. E., 1967a, Localization of tritiated serotonin in rat brain by electron-microscopic autoradiography, J. Pharmacol Exp. Ther. 156: 23–30.

    Google Scholar 

  • Aghajanian, G. K., and Bloom, F. E., 1967b, Electron-microscopic localization of tritiated norepinephrine in rat brain: Effect of drugs, J. Pharmacol Exp. Ther. 156: 407–416.

    Google Scholar 

  • Andersen, P., Eccles, J. C., and Løyning, Y., 1964, Pathway of postsynaptic inhibition in the hippocampus, J. Neurophysiol. 27: 608–619.

    Google Scholar 

  • Baldessarini, R. J., and Vogt, M., 1971, Uptake and release of norepinephrine by rat brain tissue fractions prepared by ultrafiltration, J. Neurochem. 18: 951–962.

    Article  Google Scholar 

  • Bell, L. J., Iversen, L. L., and Uretsky, N. J., 1970, Time course of the effects of 6-hydroxydopamine on catecholamine-containing neurones in rat hypothalamus and striatum, Br. J. Pharmacol. 40: 790–799.

    Google Scholar 

  • Björklund, A., Nobin, A., and Stenevi, U., 1973, Effects of 5,6-dihydroxytryptamine on nerve terminal serotonin and serotonin uptake in the rat brain, Brain Res. 53: 117–127.

    Article  Google Scholar 

  • Bond, P. A., 1973, The uptake of T-[3H] aminobutyric acid by slices from various regions of rat brain and the effect of lithium, J. Neurochem. 20: 511–517.

    Article  Google Scholar 

  • Cotman, C., Herschman, H., and Taylor, D., 1971, Subcellular fractionation of cultured glial cells, Neurobiol 2: 169–180.

    Article  Google Scholar 

  • Eidelberg, E., Goldstein, G. P., and Deza, L., 1967, Evidence for serotonin as a possible inhibitory transmitter in some limbic structures, Exp. Brain Res. 4: 73–80.

    Article  Google Scholar 

  • Fonnum, F., Storm-Mathisen, J., and Walberg, F., 1970, Glutamate decarboxylase in inhibitory neurones. A study of the enzyme in Purkinje cell axons and boutons in the cat, Brain Res. 20: 259–275.

    Article  Google Scholar 

  • Fonnum, F., Grofovi, I., Rinvik, E., Storm-Mathisen, J., and Walberg, F., 1974, Origin and distribution of glutamate decarboxylase in the substantia nigra of the cat, Brain Res. 71: 77–92.

    Article  Google Scholar 

  • Fuxe, K., Hokfelt, T., and Ungerstedt, U., 1969, Distribution of monoamines in the mammalian central nervous system by histochemical studies, in “Metabolism of Amines in the Brain” (G. Hooper, ed.), pp. 10–22, Macmillan, London.

    Google Scholar 

  • Garbarg, M., Barbin, G., Feger, J., and Schwartz, J.-C., 1974, A histaminergic pathway in rat brain evidenced by lesions of the medial forebrain bundle, Science 186: 833–834.

    Article  Google Scholar 

  • Hattori, T., McGeer, P. L., Fibiger, H. C., and McGeer, E. G., 1973, On the source of GABA-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies, Brain Res. 54: 103–114.

    Article  Google Scholar 

  • Henn, F. A., and Hamberger, A., 1971, Glial cell function: Uptake of transmitter substances, Proc. Natl. Acad. Sci. U.S.A., 68: 2686–2690.

    Article  Google Scholar 

  • Hökfelt, T., and Ljungdahl, Å., 1972a, Autoradiographic identification of cerebellar and cerebral cortical neurons accumulating labeled gamma-aminobutyric acid (3H-GABA), Exp. Brain Res. 14: 354–362.

    Article  Google Scholar 

  • Hökfelt, T., and Ljungdahl, A., 1912b, Application of cytochemical techniques to the study of suspected transmitter substances in the nervous system. Studies of Neurotransmitters at the synaptic level, Adv. Biochem. Psychopharmacol. 6: 1–36.

    Google Scholar 

  • Iversen, L. L., 1971, Role of transmitter uptake mechanism in synaptic neurotransmission, Br. J. Pharmacol 41: 571–591.

    Google Scholar 

  • Iversen, L. L, and Bloom, F. E., 1972, Studies on the uptake of [3H]-GABA and [3H]-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res. 41: 131–143.

    Article  Google Scholar 

  • Iversen, L. L., and Neal, M. J., 1968, The uptake of [3H]-GABA by slices of rat cerebral cortex, J. Neurochem. 15: 1141–1149.

    Article  Google Scholar 

  • Iversen, L. L., and Schon, F. F., 1973, The use of autoradiographic techniques for the identification and mapping of transmitter specific neurones in CNS, in “New Concepts in Neurotransmitter Regulation” ( A. J. Mandell, ed.), pp. 153–193, Plenum Press, New York and London.

    Chapter  Google Scholar 

  • Kuhar, M. J., 1973, Neurotransmitter uptake: A tool in identifying neurotransmitter-specific pathways, Life Sci. 13: 1623–1634.

    Article  Google Scholar 

  • Kuhar, M. J., and Aghajanian, G. K., 1973, Selective accumulation of [3H]-serotinin by nerve terminals of raphe neurones: An autoradiographic study, Nature (London) New Biol. 241: 387–389.

    Article  Google Scholar 

  • Kuhar, M. J., and Simon, R. J., 1974, Acetylcholine uptake: Lack of association with cholinergic neurons, J. Neurochem. 22: 1135–1137.

    Article  Google Scholar 

  • Kuhar, M. J., Roth, R. H., and Aghajanian, G. K., 1972, Synaptosomes from forebrain of rats with midbrain raphe lesions: Selective reduction of serotonin uptake, J. Pharmacol. Exp. Then 181: 36–45.

    Google Scholar 

  • Kuhar, M. J., Sethy, V. H., Roth, R. H., and Aghajanian, G. K., 1973, Choline: Selective accumulation by central cholinergic neurones, J. Neurochem. 20: 581–593.

    Article  Google Scholar 

  • Lapierre, Y., Beaudet, A., Demianczuk, N., and Descarries, L., 1973, Noradrenergic axon terminals in the cerebral cortex of rat. II. Quantitative data revealed by light and electron microscope radioautography of the frontal cortex, Brain Res. 63: 175–182.

    Article  Google Scholar 

  • Lasher, R. S., 1974, The uptake of [3H]GABA and differentiation of stellate neurons in cultures of dissociated postnatal rat cerebellum, Brain Res. 69: 235–254.

    Article  Google Scholar 

  • Levi, G., and Raiteri, M., 1973, GABA and glutamate uptake by subcellular fractions enriched in synaptosomes: Critical evaluation of some methodological aspects, Brain Res. 57: 165–185.

    Article  Google Scholar 

  • Levi, G., and Raiteri, M., 1974, Exchange of neurotransmitter amino acid at nerve endings can stimulate high affinity uptake, Nature (London) 250: 735–737.

    Article  Google Scholar 

  • Levi, G., Bertollini, A., Chen, J., and Raiteri, M., 1974, Regional differences in the synaptosomal uptake of 3H-aminobutyric acid and 14C-glutamate and possible role of exchange processes, J. Pharmacol Exp. Ther. 188: 429–438.

    Google Scholar 

  • Marchbanks, R. M., 1967, The osmotically sensitive potassium and sodium compartment of synaptosomes, Biochem. J. 104: 148–157.

    Google Scholar 

  • Nafstad, P. H. J., and Blackstad, T. W., 1966, Distribution of mitochondria in pyramidal cells and boutons in hippocampal cortex, Z. Zellforsch. Mikrosk. Anat. 73: 234–245.

    Article  Google Scholar 

  • Neal, M. J., and Iversen, L. L., 1972, Autoradiographic localization of [3H]-GABA in rat retina, Nature (London) 235: 217–218.

    Article  Google Scholar 

  • Orkand, P. M., and Kravitz, E. A., 1971, Localization of the sites of 7-aminobutyric acid (GABA) uptake in lobster nerve muscle preparations, J. Cell Biol. 49: 75–89.

    Article  Google Scholar 

  • Reis, D., and Gunne, L.-M., 1965, Brain catecholamines: Relation to the defense reaction evoked by amygdaloid stimulation in cat, Science 149: 450–451.

    Article  Google Scholar 

  • Ross, R. A., and Reis, D. J., 1974, Effects of lesions of locus coeruleus on regional distribution of dopamines-hydroxylase activity in rat brain, Brain Res. 73: 161–166.

    Article  Google Scholar 

  • Schrier, B. K., and Thompson, E. J., 1974, On the role of glial cells in the mammalian nervous system: Uptake, excretion, and metabolism of putative neurotransmitters by cultured glial tumor cells, J. Biol. Chem. 249: 1769–1780.

    Google Scholar 

  • Sheard, M. H., and Aghajanian, G. K., 1968, Stimulation of the midbrain raphe: Effect on serotonin metabolism, J. Pharmacol. Exp. Ther. 163: 425–430.

    Google Scholar 

  • Snodgrass, S. R., and Iversen, L. L., 1973, Effects of amino-oxyacetic acid on [3H] GABA uptake by rat brain slices, J. Neurochem. 20: 431–439.

    Article  Google Scholar 

  • Snyder, S. H., and Coyle, J. T., 1969, Regional differences in [3H]-norepinephrine and [H3]-dopa-mine uptake into rat brain homogenates, J. Pharmacol. Exp. Ther. 165: 78–86.

    Google Scholar 

  • Snyder, S. H., and Taylor, K. M., 1972, Histamine in the brain: A neurotransmitter? in “Perspectives in Neuropharmacology. A tribute to Julius Axelrod” ( S. H. Snyder, ed.), pp. 43–73, Oxford University Press, New York, London, and Toronto.

    Google Scholar 

  • Snyder, S. H., Kuhar, M. J., Green, A. I., Coyle, J. T., and Shaskan, G., 1970, Uptake and subcellular localization of neurotransmitters in the brain, Int. Rev. Neurobiol. 13: 127–158.

    Article  Google Scholar 

  • Snyder, S. H., Yamamura, H. I., Pert, C. B., Logan, W. J., and Bennett, J. P., 1973, Neuronal uptake of neurotransmitters and their precursors: Studies witfi “transmitter” amino acids and choline, in “New Concepts in Neurotransmitter Regulation” (A. J. Mandell, ed.), pp. 195–222, Plenum Press, New York and London.

    Chapter  Google Scholar 

  • Sotelo, C., Privat, A., and Drian, M.-J., 1972, Localization of (3H)GABA in tissue culture of rat cerebellum using electron microscopy radioautography, Brain Res. 45: 302–308.

    Article  Google Scholar 

  • Storm-Mathisen, J., 1970, Quantitative histochemistry of acetylcholinesterase in rat hippocampal region correlated to histochemical staining, J. Neurochem. 17: 739–750.

    Article  Google Scholar 

  • Storm-Mathisen, J., 1972, Glutamate decarboxylase in the rat hippocampal region after lesions of the afferent fibre systems. Evidence that the enzyme is localized in intrinsic neurones, Brain Res. 40: 215–235.

    Article  Google Scholar 

  • Storm-Mathisen, J., 1975, High affinity uptake of GABA in presumed GABA-ergic nerve endings in rat brain, Brain Res. 84: 409–427.

    Article  Google Scholar 

  • Storm-Mathisen, J., and Guldberg, H. C., 1974, 5-Hydroxytryptamine and noradrenaline in the hippocampal region: Effect of transection of afferent pathways on endogenous levels, high affinity uptake and some transmitter-related enzymes, J. Neurochem. 22: 739–803.

    Article  Google Scholar 

  • Ungerstedt, U., 1971, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. Suppl. 367: 1–48.

    Google Scholar 

  • Welch, B. L., Hendley, E. D., and Turek, I., 1974, Norepinephrine uptake into cerebral cortical synaptosomes after one fight or electroconvulsive shock, Science 183: 220–221.

    Article  Google Scholar 

  • Wofsey, A. R., Kuhar, M. J., and Snyder, S. H., 1971, A unique synaptosomal fraction, which accumulates glutamic and aspartic acids in brain tissue, Proc. Natl Acad. Sci. U.S.A. 68: 1102–1106.

    Article  Google Scholar 

  • Zigmond, M. J., Chalmers, J. P., Simpson, J. R., and Wurtman, R. J., 1971, Effect of lateral hypothalamic lesions on uptake of norepinephrine by brain homogenates, J. Pharmacol Exp. Ther. 179: 20–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Storm-Mathisen, J. (1975). Uptake of Transmitter Candidates as an Approach to their Localization. In: Berl, S., Clarke, D.D., Schneider, D. (eds) Metabolic Compartmentation and Neurotransmission. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4319-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4319-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4321-9

  • Online ISBN: 978-1-4613-4319-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics