Skip to main content

Abstract

The discovery of the existence of nuclear γ-ray resonance in solids by R. L. Mössbauer(1) in 1958 led rapidly to the development of a new spectroscopic tool for the study of the structure and composition of matter. the technique quickly expanded across interdisciplinary lines from physics to metallurgy, chemistry, and biology. the applications have been diverse and often imaginative as witnessed by the observation of changes in the abdominal movements of large Transylvanian ants during their death throes.(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Mössbauer, Kemresonanzfluoreszenz von gammastrahlung in Ir191, Z. Phvs. 151, 124–143 (1958).

    Google Scholar 

  2. T. Bonchev, I. Vassilev, T. Sapundzhiev, and M. Evtimov, Possibility of investigating movement in a group of ants by the Mössbauer effect, Nature 217, 96–98 (1968).

    Article  Google Scholar 

  3. J. Danon, Lectures on the Mössbauer Effect, Gordon and Breach, Science Publishers, Inc., New York (1968).

    Google Scholar 

  4. H. Frauenfelder, The Mössbauer Effect, W. A. Benjamin, New York (1962).

    Google Scholar 

  5. V. I. Goldanskii and R. H. Herber (eds.), Chemical Applications of Mössbauer Spectroscopy, Academic Press, New York (1968).

    Google Scholar 

  6. G. K. Wertheim, Mössbauer Effect: Principles and Applications, Academic Press, New York (1964).

    Google Scholar 

  7. M. J. D. Low, in The Gas-Solid Interface (E. A. Flood, ed.) Vol. 2, pp. 947–974, Marcel Dekker, Inc., New York (1967).

    Google Scholar 

  8. W. N. Delgass and M. Boudart, Application of Mössbauer spectroscopy to the study of adsorption and catalysis, Catal. Rev. 2, 129–160 (1968).

    Article  CAS  Google Scholar 

  9. M. C. Hobson, Jr., Surface studies by Mössbauer spectroscopy, Adv. Colloid Interface Sci. 3, 1–43 (1971).

    Article  CAS  Google Scholar 

  10. I. V. Goldanskii and I. P. Suzdalev, in Proceedings of the Conference on Applications of the Mössbauer Effect, pp. 269–305, Tihany (1969), Akadémai Kiado, Budapest, 1971.

    Google Scholar 

  11. K. G. Malmfors, in Beta and Gamma Ray Spectroscopy (K. Siegbahn, ed.) Vol. 2, pp. 1281–1292, North-Holland, Amsterdam (1965).

    Google Scholar 

  12. J. W. Burton and R. P. Godwin, Mössbauer effect in surface studies: Fe-57 on W and Ag, Phys. Rev. 158, 218–224 (1967).

    Article  CAS  Google Scholar 

  13. R. L. Collins, Mössbauer studies of iron organometallic complexes. IV. Sign of the electric field gradient in ferrocene, J. Chem. Phys. 42, 1072–1080 (1965).

    Article  CAS  Google Scholar 

  14. R. L. Collins and J. C. Travis, in Mössbauer Effect Methodology (I. J. Gruverman, ed.) Vol. 3, pp. 123–161, Plenum Press, New York (1967).

    Google Scholar 

  15. Y. Bando, M. Kiyama, N. Yamamoto, T. Takada, T. Shinjo, and H. Takaki, The magnetic properties of α-Fe2O3 fine particles, J. Phys. Soc. Japan 20, 2086 (1965).

    Article  CAS  Google Scholar 

  16. T. Zemcik, Mössbauer six-line spectra positions analysis for Fe57 in metallic iron, Czech. J. Phys. B 18, 551–566 (1968).

    Article  CAS  Google Scholar 

  17. M. Blume, Magnetic relaxation and asymmetric quadrupole doublets in the Mössbauer effect, Phys. Rev. Letters 14, 96–98 (1965).

    Article  CAS  Google Scholar 

  18. H. H. Wickman, in Mössbauer Effect Methodology (I. J. Gruverman, ed.) Vol. 2, pp. 39–67, Plenum Press, New York (1966).

    Google Scholar 

  19. S. V. Karyagin, A possible cause for the doublet component asymmetry in the Mössbauer absorption spectrum of some powdered tin compounds, Dokl. Akad. Nauk SSSR 148, 1102–1105 (1963).

    CAS  Google Scholar 

  20. V. I. Goldanskii, E. F. Makarov, and V. V. Khrapov, On the difference in two peaks of quadrupole splitting in Mössbauer spectra, Phys. Letters 3, 344–346 (1963).

    Article  CAS  Google Scholar 

  21. V. I. Goldanskii, G. M. Gorodinskii, S. V. Karyagin, L. A. Korytkeo, L. M. Krizhanskii, E. F. Makarov, I. P. Suzdalev, and V. V. Khrapov, The Mössbauer effect in tin compounds, Dokl. Akad. Nauk SSSR 147, 127–130 (1962).

    CAS  Google Scholar 

  22. K. S. Singwi and A. Sjolander, Resonance absorption of nuclear y-rays and the dynamics of atomic motion, Phys. Rev. 120, 1093–1102 (1960).

    Article  Google Scholar 

  23. N. N. Greenwood, Applications of Mössbauer spectroscopy to problems in solidstate chemistry, Angew. Chem. (Intl. ed.) 10, 716–724 (1971).

    Article  CAS  Google Scholar 

  24. J. J. Spijkerman, in An Introduction to Mössbauer Spectroscopy (L. May, ed.) pp. 23–43, Plenum Press, New York (1971).

    Chapter  Google Scholar 

  25. A. A. Maradudin and J. Melngailis, Some dynamical properties of surface atoms, Phys. Rev. 133A, 1188–1193 (1964).

    Article  Google Scholar 

  26. A. A. Maradudin, in Solid State Physics (F. Seitz and D. Turnbull, eds.) Vol. 19, pp. 1–134, Academic Press, New York (1966).

    Google Scholar 

  27. F. G. Allen, Mössbauer effect from 57Co on a clean silicon surface, Bull. Am. Phys. Soc. 9, 296 (1964).

    Google Scholar 

  28. I. P. Suzdalev, V. I. Goldanskii, E. F. Makarov, A. S. Plachinda, and L. A. Korytko, An investigation of the dynamics of motion of tin atoms on a silica gel surface by means of the Mössbauer effect, Sov. Phys.—JETP 22, 979–983 (1966).

    Google Scholar 

  29. P. A. Flinn, S. L. Ruby, and W. L. Kehi, Mössbauer effect for surface atoms: Iron-57 at the surface of η-Al2O3, Science 143, 1434–1436 (1964).

    Article  CAS  Google Scholar 

  30. R. M. Housley and F. Hess, Analysis of Debye-Waller factor and Mössbauer-thermal-shift measurements. I. General theory, Phys. Rev. 146, 517–526 (1966).

    Article  CAS  Google Scholar 

  31. N. E. Erickson, in Advances in Chemistry Series (R. F. Gould, ed.) Vol. 68, pp. 86–104, American Chemical Society, Washington (1967).

    Google Scholar 

  32. J. L. Mackey and R. L. Collins, The Mössbauer effect of iron in ion exchange resins, J. Inorg. Nucl. Chem. 29, 655–660 (1967).

    Article  Google Scholar 

  33. I. P. Suzdalev, A. S. Plachinda, E. F. Makarov, and V. A. Dolgopolov, Study of ionexchange resins by gamma-resonance spectroscopy (Mössbauer effect), Russ. J. Phys. Chem. 41, 1522–1526 (1967).

    Google Scholar 

  34. V. I. Goldanskii, I. P. Suzdalev, A. S. Plachinda, and V. P. Korneev, Hyperfine structure of iron (3+) Mössbauer spectra in an ion exchange sulfo resin with varying degrees of dehydration, Dokl. Akad. Nauk SSSR 185, 203–205 (1969).

    Google Scholar 

  35. A. Johansson, Mössbauer spectra of 57Fe in ion-exchange resins, J. Inorg. Nucl. Chem. 31, 3273–3285 (1969).

    Article  CAS  Google Scholar 

  36. I. P. Suzdalev, A. M. Afanasiev, A. S. Plachinda, V. I. Goldanskii, and E. F. Makarov, Spin lattice relaxation studied from the hyperfine structure of iron (3+) ion Mössbauer spectra, Sov. Phys.—JETPIZ, 923–930 (1969).

    Google Scholar 

  37. I. P. Suzdalev, V. P. Korneev, and Yu. F. Krupiansky, in Proceedings of the Conference on Applications of the Mössbauer Effect, pp. 148–151, Tihany (1969), Akadémai Kiado, Budapest, 1971.

    Google Scholar 

  38. A. S. Plachinda, I. P. Suzdalev, V. I. Goldanskii, and I. E. Neimark, Mechanism of the interaction of water molecules with iron ions in ion-exchange resins studied by Mössbauer spectroscopy, Teor. Eksp. Khim. 6, 347–352 (1970).

    CAS  Google Scholar 

  39. G. Pfrepper, K. Hennig, and S. Usmanowa, Untersuchungen zur bindung von Fe (III)—Ionen in starksauren kationenaustauschern mit hilfe der Mössbauerspectroskopie, Z. Phys. Chem. 244, 113–116 (1970).

    CAS  Google Scholar 

  40. V. I. Goldanskii, I. P. Suzdalev, A. S. Plachinda, and L. G. Shtyrkov, Investigation of the structure and adsorption properties of zeolites by the nuclear y-resonance method, Dokl. Akad. Nauk SSSR 169, 511–514 (1966).

    Google Scholar 

  41. J. Morice and L. V. C. Rees, Mössbauer studies of Fe-57 in zeolites, Trans. Faraday Soc. 64, 1388–1395 (1968).

    Article  CAS  Google Scholar 

  42. W. N. Delgass, R. L. Garten, and M. Boudart, Mössbauer effect of exchangeable ferrous ions in Y-zeolite and Dowex 50 resin, J. Chem. Phys. 50, 4603–4606 (1969).

    Article  CAS  Google Scholar 

  43. W. N. Delgass, R. L. Garten, and M. Boudart, Dehydration and Adsorbate interactions of Fe-Y zeolite by Mössbauer spectroscopy, J. Phys. Chem. 73, 2970–2979 (1969).

    Article  CAS  Google Scholar 

  44. R. W. J. Wedd, B. V. Liengme, J. C. Scott, and J. R. Sams, Mössbauer investigation of iron species in a zeolite, Solid State Commun. 7, 1091–1093 (1969).

    Article  CAS  Google Scholar 

  45. R. L. Garten, W. N. Delgass, and M. Boudart, A. Mössbauer spectroscopic study of the reversible oxidation of ferrous ions in Y-zeolite, J. Catal. 18, 90–107 (1970).

    Article  CAS  Google Scholar 

  46. M. C. Hobson, Jr. and H. M. Gager, A Mössbauer effect study on crystallites of supported ferric oxide, J. Catal. 16, 254–263 (1970).

    Article  CAS  Google Scholar 

  47. M. C. Hobson, Jr. and A. D. Campbell, Mössbauer effect spectra of a supported iron catalyst, J. Catal. 8, 294–298 (1967).

    Article  CAS  Google Scholar 

  48. M. C. Hobson, Jr. and H. M. Gager, Mössbauer effect studies of chemisorption. Titration of surfaces of iron catalysts with polar molecules, J. Colloid Interface Sci. 34, 357–364 (1970).

    Article  CAS  Google Scholar 

  49. M. Folman and D. J. C. Yates, Infrared studies of physically adsorbed polar molecules and of the surface of a silica adsorbent containing hydroxyl groups, J. Phys. Chem. 63, 183–187 (1959).

    Article  CAS  Google Scholar 

  50. R. Ingalls, Electric field gradient tensor in ferrous compounds, Phys. Rev. 133A, 787–795 (1964).

    Article  Google Scholar 

  51. K. Rabinovitch and H. Shechter, Mössbauer measurements on magnetic anisotropy in thin films of iron, J. Appl. Phys. 39, 2464–2466 (1968).

    Article  CAS  Google Scholar 

  52. A. C. Zuppero and R. W. Hoffman, Mössbauer spectra of monolayer iron films, J. Vac. Sci. Technol. 7, 118–121 (1970).

    Article  CAS  Google Scholar 

  53. W. Zinn, Mössbauer effect studies on magnetic thin films, Czech. J. Phys. B21, 391–406 (1971).

    Article  Google Scholar 

  54. D. D. Jove and R. C. Axtmann, Quantitative analysis for corrosion studies by the Mössbauer effect. Anal. Chem. 40, 876 878 (1968).

    Article  Google Scholar 

  55. J. H. Terrell and J. J. Spijkerman, Determination of surface compound formation by backscatter Mössbauer spectroscopy, Appl. Phys. Letters 13, 11–13 (1968).

    Article  CAS  Google Scholar 

  56. A. M. Pritchard and C. M. Dobson, Mössbauer effect and iron corrosion kinetics. Nature 224, 1295 (1969).

    Article  CAS  Google Scholar 

  57. A. M. Pritchard. J. R. Haddon. and G. N. Walton. Study of some products of the corrosion of iron under hydrothermal conditions using the Mössbauer effect. Corros. Sci. 11, 11–23 (1971).

    Article  CAS  Google Scholar 

  58. R. Van Hardeveld and A. Van Montfoort. The influence of crystallite size on the adsorption of molecular nitrogen on nickel, palladium and platinum. Infrared and electron-microscopic study. Surface Sci. 4, 396–430 (1966).

    Article  Google Scholar 

  59. N. Yamamoto, The shift of the spin flip temperature of α-Fe2O3 fine particles, J. Phys. Soc. Japan 24. 23–28(1968).

    Article  CAS  Google Scholar 

  60. D. Schroeer and R. C. Ninninger. Jr., Morin transition in α-Fe2O3 microcrystals. Phys. Rev. Letters 19, 632–634 (1967).

    Article  CAS  Google Scholar 

  61. D. Schroeer, in Mössbauer Effect Methodology1967 (I. J. Gruverman. ed.) Vol. 5, pp. 141–162, Plenum Press, New York (1970).

    Chapter  Google Scholar 

  62. L. Néel, Influence des fluctuations thermiques sur l’aimantation des grains ferromagnetique trés fins, Compt. Rendu. 228, 664–666 (1949).

    Google Scholar 

  63. C. P. Bean and J. D. Livingston, Superparamagnetism, J. Appl. Phys. 30, 120S 129S (1959).

    CAS  Google Scholar 

  64. W. Kundig, H. Bommel, G. Constabaris, and R. H. Lindquist. Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect, Phys. Rev. 142, 327–333 (1966).

    Article  Google Scholar 

  65. W. Kundig, K. J. Ando, R. H. Lindquist, and G. Constabaris, Mössbauer studies of ultrafine particles of NiO and α-Fe2O3, Czech. J. Phys.B17, 467–473 (1967)

    Article  Google Scholar 

  66. K. J. Ando, W. Kündig, G. Constabaris, and R. H. Lindquist, Mössbauer effect of Fe-57 in ultrafine particles and bulk NiO, J. Phys. Chem. Solids 28, 2291–2295 (1967).

    Article  CAS  Google Scholar 

  67. W. Kundig, M. Kobelt, H. Appel. G. Constabaris, and R. H. Lindquist, Mössbauer studies of Co3O4; Bulk material and ultrafine particles, J. Phys. Chem. Solids 30, 819–826 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Hobson, M.C. (1974). Mössbauer Spectroscopy. In: Kane, P.F., Larrabee, G.B. (eds) Characterization of Solid Surfaces. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4490-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4490-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4492-6

  • Online ISBN: 978-1-4613-4490-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics