Skip to main content

Simplified Voronoi Diagrams

  • Chapter
Autonomous Robot Vehicles

Abstract

We are interested in Voronoi diagrams as a tool in robot path planning, where the search for a path in an r-dimensional space may be simplified to a search on an (r-1)-dimensional Voronoi diagram. We define a Voronoi diagram V based on a measure of distance which is not a true metric. This formulation has lower algebraic complexity than the usual definition, which is a considerable advantage in motion-planning problems with many degrees of freedom. In its simplest form, the measure of distance between a point and a polytope is the maximum of the distances of the point from the half-spaces which pass through faces of the polytope. More generally, the measure is defined in configuration spaces which represent rotation. The Voronoi diagram defined using this distance measure is no longer a strong deformation retract of free space, but it has the following useful property: any path through free space which starts and ends on the diagram can be continuously deformed so that it lies entirely on the diagram. Thus it is still complete for motion planning, but it has lower algebraic complexity than a diagram based on the Euclidean metric.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory’s Artificial Intelligence research is provided in part by the Office of Naval Research under Office of Naval Research Contract N00014-81-K-0494 and in part by the Advanced Research Projects Agency under Office of Naval Research Contracts N00014-85-K-0124 and N00014-82-K-0334. John Canny was supported by an IBM fellowship. Bruce Donald was funded in part by a NASA fellowship administered by the Jet Propulsion Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Canny, J. F., A Voronoi method for the piano-movers problem, Proc. IEEE Int. Conf. Robotics and Automation, St. Louis, MO, March 1985.

    Google Scholar 

  • Canny, J. F., Collision detection for moving polyhedra, IEEE Trans. PAMI (1986a) 8.

    Google Scholar 

  • Canny, J. F., Constructing roadmaps of semi-algebraic sets, Proc. Int. Workshop on Geometric Reasoning, Oxford University, June 1986b.

    Google Scholar 

  • Donald, B. R., Motion Planning with Six Degrees of Freedom, MIT AI-TR-791, MIT Artificial Intelligence Lab., 1984.

    Google Scholar 

  • Lee, D. T. and Drysdale, R. L., Generalization of Voronoi diagrams in the plane, SIAM J. Comput. 10 (1981), 73–87.

    Article  MATH  MathSciNet  Google Scholar 

  • Lozano-Pérez, T., Spatial planning: a configuration space approach, IEEE Trans. Comput. 32 (1983), 108–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Lozano-Pérez, T. and Wesley, M., An algorithm for planning collision-free paths among polyhedral obstacles, Comm. ACM 22 (1979), 560–570.

    Article  Google Scholar 

  • O’Dúnlaing, C., Sharir, M., and Yap, C., Generalized Voronoi Diagrams for Moving a Ladder: I Topological Analysis, Robotics Lab. Tech. Report No. 32, NYU-Courant Institute, (1984).

    Google Scholar 

  • O’Dúnlaing, C., Sharir, M., and Yap, C., Generalized Voronoi Diagrams for Moving a Ladder: II Efficient Construction of the Diagram, Robotics Lab. Tech. Report No. 33, NYU-Courant Institute (1984).

    Google Scholar 

  • O’Dúnlaing, C. and Yap, C., A retraction method for planning the motion of a disc, J. Algorithms, 6 (1985), 104–111.

    Article  MATH  MathSciNet  Google Scholar 

  • Schwartz, J. and Sharir, M., On the, On the “Piano Movers” Problem, II. General Techniques for Computing Topological Properties of Real Algebraic Manifolds, Report No. 41, Comp. Sci. Dept., New York University 1982.

    Google Scholar 

  • Schwartz, J. and Yap, C. K., Advances in Robotics, Lawrence Erlbaum Associates, Hillside, New Jersey, 1986.

    Google Scholar 

  • Whitney, H., Elementary structure of real algebraic varieties, Ann. of Math. 66 (1957), 3.

    Article  MathSciNet  Google Scholar 

  • Yap, C., Coordinating the Motion of Several Discs, Robotics Lab. Tech. Report No. 16, NYU-Courant Institute (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 AT&T

About this chapter

Cite this chapter

Canny, J., Donald, B. (1990). Simplified Voronoi Diagrams. In: Cox, I.J., Wilfong, G.T. (eds) Autonomous Robot Vehicles. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8997-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8997-2_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8999-6

  • Online ISBN: 978-1-4613-8997-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics