Skip to main content

Mostow rigidity on the line: A survey

  • Conference paper
Holomorphic Functions and Moduli II

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 11))

Abstract

G.D. Mostow’s celebrated Rigidity Theorem has taken some curious forms on the real line. All assume that f (a continuous strictly increasing real valued function of a real variable) is the “boundary mapping” of an isomorphism between Fuchsian groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agard, S., A geometric proof of Mostow’s rigidity theorem for groups of divergence type, Acta. Math. 151 (1983), 231–252.

    Article  MathSciNet  MATH  Google Scholar 

  2. Agard, S., Elementary properties of Möbius transformations in Rn with applications to rigidity theory. University of Minnesota Math. Report 82–110, (1982), Minneapolis.

    Google Scholar 

  3. Agard, S., Remarks on the boundary mapping for a Fuchsian group ,Ann. Acad. Sci. Fenn. A.I. Math 10 (1985), 1–13.

    MathSciNet  MATH  Google Scholar 

  4. Ahlfors, L., “Möbius Transformations in Several Variables,” Ordway Professorship Lectures in Mathematics, University of Minnesota, Minneapolis, 1981.

    Google Scholar 

  5. Ahlfors, L., Ergodic properties of Möbius transformations ,Analytic functions Kozub-nik 1979, Lecture Notes in Math. 798; Springer (1980), 1–9.

    Google Scholar 

  6. Ahlfors, L., and Sario, L., “Riemann Surfaces,” Princeton, 1960.

    MATH  Google Scholar 

  7. Beardon, A.F., and Maskit, B., Limit points of Kleinian groups and finite sided fundamental polyhedra ,Acta. Math. 132 (1974), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bowen, R., Hausdorff dimension of quasicircles ,Inst. Hautes Etudes Sci. Publ. Math 50 (1979), 11–25.

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantinescu, C., and Cornea, A., “Ideale Ränden Riemannschen Flächen,” Springer, 1963.

    Google Scholar 

  10. Hopf, E., Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc. 77 (1971), 863–877.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuusalo, T., Boundary mappings of geometric isomorphisms of Fuchsian groups ,Ann. Acad. Sci. Fenn. A.I. Math 545 (1973), 1–7.

    Google Scholar 

  12. Kusunoki, Y., and Taniguchi, M., Remarks on Fuchsian groups associated with open Riemann surfaces ,Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook conference, edited by I. Kra and B. Maskit, Ann. of Math. Studies 97 (1981); Princeton, 377–390.

    Google Scholar 

  13. Mostow, G.D., Quasiconformal mappings inn-space and the rigidity of hyperbolic space forms ,Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 53–104.

    Article  MathSciNet  MATH  Google Scholar 

  14. Mostow, G.D., “Strong Rigidity of Locally Symmetric Spaces,” Ann. Math. Studies 78 (1973), Princeton.

    Google Scholar 

  15. Sullivan, D., On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions ,Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook conference, edited by I. Kra and B. Maskit, Ann. of Math. Studies 97 (1981); Princeton, 465–496.

    Google Scholar 

  16. Sullivan, D., Discrete conformal groups and measurable dynamics ,Bulletin (New Series) AMS 6 (No. 1) (1982), 57–73.

    Article  MATH  Google Scholar 

  17. Tukia, P., Differentiability and rigidity of Möbius groups ,Invent. Math. 82 (1985); No. 3, 557–578.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Agard, S. (1988). Mostow rigidity on the line: A survey. In: Drasin, D., Earle, C.J., Gehring, F.W., Kra, I., Marden, A. (eds) Holomorphic Functions and Moduli II. Mathematical Sciences Research Institute Publications, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9611-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9611-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9613-0

  • Online ISBN: 978-1-4613-9611-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics