Skip to main content

A Note on the Stability of an Integral Equation

  • Chapter
  • First Online:
Functional Equations in Mathematical Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 52))

Abstract

Let p: be a continuous function. We give a sufficient condition in order that the integral equation \(f(t) = f(0) +{ \int \nolimits \nolimits }_{0}^{\,t}p(s)f(s)\,\mathrm{d}s\) have the Hyers–Ulam stability. We also prove that if p has no zeros, then the sufficient condition is a necessary condition.

Mathematics Subject Classification (2000): Primary 34K20; Secondary 26D10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsina, C., Ger, R.: On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 2, 373–380 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64–66.

    Article  MathSciNet  MATH  Google Scholar 

  3. Byungbae, K., Jung, S.-M.: Bessel’s differential equation and its Hyers–Ulam stability. J. Inequal. Appl. 2007 Art. ID 21640, 8 pp. (2007)

    Google Scholar 

  4. Ger, R., Šemrl, P.: The stability of the exponential equation. Proc. Amer. Math. Soc. 124,779–787 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A., 27, 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  6. Hyers, D.H., Rassias, Th.M.: Approximate homomorphisms. Aequationes Math. 44, 125–153 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhauser (1998)

    Google Scholar 

  8. Jung, S.-M.: A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, Art ID 57064, 9 pp. (2007)

    Google Scholar 

  9. Jung, S.-M., Byungbae, K.: Chebyshev’s differential equation and its Hyers–Ulam stability. Differ. Equ. Appl. 1, 199–207 (2009)

    MathSciNet  Google Scholar 

  10. Miura, T., Miyajima, S., Takahasi, S.-E.: Hyers–Ulam stability of linear differential operator with constant coefficients. Math. Nachr. 258, 90–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Miura, T., Miyajima, S., Takahasi, S.-E.: A characterization of Hyers–Ulam stability of first order linear differential operators. J. Math. Anal. Appl. 286, 136–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rassias, Th.M., Šemrl, P.: On the behavior of mappings which do not satisfy Hyers–Ulam stability. Proc. Amer. Math. Soc. 114, 989–993 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rassias, Th.M.: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 251, 264–284 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miura, T., Hirasawa, G., Takahasi, SE., Hayata, T. (2011). A Note on the Stability of an Integral Equation. In: Rassias, T., Brzdek, J. (eds) Functional Equations in Mathematical Analysis. Springer Optimization and Its Applications(), vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0055-4_17

Download citation

Publish with us

Policies and ethics